
Appl Intell
DOI 10.1007/s10489-017-1057-2

Efficient high utility itemset mining using buffered
utility-lists

Quang-Huy Duong1 · Philippe Fournier-Viger2 · Heri Ramampiaro1 · Kjetil Nørvåg1 ·
Thu-Lan Dam1

© Springer Science+Business Media, LLC 2017

Abstract Discovering high utility itemsets in transaction
databases is a key task for studying the behavior of cus-
tomers. It consists of finding groups of items bought
together that yield a high profit. Several algorithms have
been proposed to mine high utility itemsets using vari-
ous approaches and more or less complex data structures.
Among existing algorithms, one-phase algorithms employ-
ing the utility-list structure have shown to be the most
efficient. In recent years, the simplicity of the utility-list
structure has led to the development of numerous utility-
list based algorithms for various tasks related to utility
mining. However, a major limitation of utility-list based
algorithms is that creating and maintaining utility-lists are
time consuming and can consume a huge amount of mem-
ory. The reasons are that numerous utility lists are built
and that the utility-list intersection/join operation to con-
struct a utility-list is costly. This paper addresses this issue
by proposing an improved utility-list structure called utility-
list buffer to reduce the memory consumption and speed up
the join operation. This structure is integrated into a novel
algorithm named ULB-Miner (Utility-List Buffer for high

� Philippe Fournier-Viger
philfv@hit.edu.cn

� Heri Ramampiaro
heri@idi.ntnu.no

1 Department of Computer and Information Science,
Norwegian University of Science and Technology,
Trondheim, Norway

2 School of Humanities and Social Sciences, Harbin Institute
of Technology (Shenzhen), Shenzhen, GD, 518055, China

utility itemset Miner), which introduces several new ideas to
more efficiently discover high utility itemsets. ULB-Miner
uses the designed utility-list buffer structure to efficiently
store and retrieve utility-lists, and reuse memory during the
mining process. Moreover, the paper also introduces a lin-
ear time method for constructing utility-list segments in a
utility-list buffer. An extensive experimental study on vari-
ous datasets shows that the proposed algorithm relying on
the novel utility-list buffer structure is highly efficient in
terms of both execution time and memory consumption. The
ULB-Miner algorithm is up to 10 times faster than the FHM
and HUI-Miner algorithms and consumes up to 6 times
less memory. Moreover, it performs well on both dense and
sparse datasets.

Keywords Pattern mining · Itemset mining · Utility
mining · Utility list · Utility list buffer

1 Introduction

In the field of data mining, the task of Frequent Itemset
Mining (FIM) has been extensively studied [1, 6, 15–17,
38]. The goal of FIM is to find patterns (frequent item-
sets) describing groups of products frequently purchased by
customers in a transaction database. FIM has been widely
applied because of its ability to discover patterns about
customer behavior that are easily interpretable by humans
and can support decision-making. Even though FIM has
attracted a lot of attention from researchers and practition-
ers, a fundamental limitation of FIM is that it is designed
to find frequent patterns. In real-life, however, frequent pat-
terns are not always the most interesting or useful patterns.
For example, many frequent patterns, such as {bread, egg},
may be found in transaction databases, but they may

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-017-1057-2&domain=pdf
mailto:philfv@hit.edu.cn
mailto:heri@idi.ntnu.no

Q.-H. Duong et al.

generate a very low profit even though they are frequently
purchased.

To find patterns that are profitable rather than solely
frequent, the FIM problem has been generalized as the
problem of High Utility Itemset Mining (HUIM) [5, 13, 23–
26, 28, 30, 34]. Key differences between HUIM and FIM
are that HUIM allows non-binary purchase quantities for
items in transactions, and it considers that all items may
not be equally important (e.g., may have different unit prof-
its). To perform HUIM, a user must provide a minimum
utility threshold minutil, and the output is a set of high
utility itemsets (HUIs), i.e. sets of items that yield a high
profit when purchased together. HUIM has gained popu-
larity in recent years because finding profitable patterns is
more useful for businesses than finding frequent patterns,
since many frequent patterns may yield a low profit, and
many infrequent patterns may yield a high profit. HUIM has
several applications besides market basket analysis such as
cross-marketing [3, 30], biomedicine [35] and click stream
analysis [4, 29].

AlthoughHUIMhas desirable properties, as it can provide
more useful knowledge compared to FIM for several appli-
cations, it is a more difficult problem than FIM. In FIM,
most algorithms are designed based on the fact that the sup-
port is anti-monotonic (the support of an itemset is greater
or equal to the support of its supersets). This property of the
support measure allows it to efficiently reduce the search
space, as supersets of infrequent itemsets do not need to be
considered. However, in HUIM there is no such property for
the utility measure (the utility of an itemset may be less than,
equal to or greater than the utility of its supersets). For this
reason, designing efficient algorithms for HUIM requires
the design of new methods for reducing the search space.

Utility-lists were introduced in the HUI-Miner [23] algo-
rithm to discover high utility itemsets. HUI-Miner was
shown to be up to 100 times faster than several state-of-the-
art algorithms. HUI-Miner associates a utility-list to each
itemset, and builds utility-lists of itemsets without scan-
ning the database by joining the utility-lists of some of
their subsets. The algorithm can directly calculate the utility
of itemsets and reduce the search space without having to
maintain a set of candidates in memory or to repeatedly scan
the database. The simplicity of the utility-list structure and
the high performance of utility-list based algorithms have
led to the development of numerous utility-list based algo-
rithms for HUIM and variations of the HUIM problem such
as closed high utility itemset mining [7, 25, 33], top-k high
utility itemset mining [9, 21, 31], high utility itemset mining
in uncertain databases [22], high utility sequential pattern
mining [32], and on-shelf high utility itemset mining [8, 14],
among others [11–13, 18, 36]. Although the introduction of
the utility-list structure has been a breakthrough in the field
of HUIM, the utility-list structures still have to be improved.

In particular, it can be observed that the amount of memory
required by utility-lists can be quite large.

In this study, we address this need for a more efficient
structure for HUIM by proposing an improved utility-list
structure called Utility-List Buffer, and related operations
for exploiting this structure to mine HUIs. The major con-
tributions of this work are fourfold.

– A novel Utility-List Buffer structure is proposed. It
is based on the principle of buffering utility-lists to
decrease memory consumption. A Utility-List Buffer
consists of multiple segments, which are reused to store
utility-list information.

– An efficient join operation is designed to create utility-
lists segments in a Utility-List Buffer in linear time, to
decrease the time required for utility-list construction.

– An efficient algorithm named ULB-Miner (Utility-List
Buffer Miner) is proposed to mine HUIs efficiently
using the designed Utility-List Buffer structure and
several implementation optimizations.

– An extensive experimental study is conducted in order
to evaluate the efficiency of the proposed utility-list
buffer structure and ULB-Miner algorithm on both
sparse and dense datasets having various characteris-
tics. In these experiments, the performance of ULB-
Miner is compared with state-of-the-art algorithms with
or without the novel utility-list buffer structure. Our
results show that the proposed ULB-Miner algorithm
outperforms the previous state-of-the-art utility-list
based HUIM algorithms. Moreover, our experiments
show that algorithms employing the novel structure are
up to 10 times faster than when using standard utility-
lists and consumes up to 6 times less memory. Also, the
proposed technique performs quite well on both dense
and sparse datasets.

The rest of this paper is organized as follows. In
Section 2, we briefly review the related literature. In
Section 3, we define the problem of mining high utility
itemsets and introduce the preliminaries of this paper. In
Section 4, we present the novel utility-list buffer structure,
its construction and join operation, and the ULB-Miner
algorithm. In Section 5, we report on and discuss the exper-
imental results. Finally, in Section 6, we conclude our paper
and outline the future work.

2 Related work

A key difference between FIM (Frequent Itemset Mining)
and HUIM (High Utility Itemset Mining) is that the inter-
estingness measure used in HUIM to evaluate patterns is
neither anti-monotonic nor monotonic, contrarily to the sup-
port measure used in FIM. In other words, an itemset may

Efficient high utility itemset mining using buffered utility-lists

have supersets having a utility that is less than, equal to or
greater than its utility. Because of this, the utility measure
should not be directly used to reduce the search space. If an
algorithm ignores all the supersets of a low utility itemset,
some high utility itemsets may be missed, and the algorithm
would be incomplete. The solution to this issue, adopted by
most HUIM algorithms, has been to rely on upper-bounds
on the utility of itemsets that are anti-monotonic to prune the
search space without missing any high utility itemsets. The
Transaction-Weighted Utilization (TWU) is the first such
measure, which was introduced in the Two-Phase algorithm
[24]. Because the TWU is anti-monotonic, it can be used to
reduce the search space, while ensuring that no High Util-
ity Itemsets (HUIs) are missed. According to the pruning
property of the TWU measure, if an itemset has a TWU
lower than the minutil threshold, all its supersets can be
ignored. Although this property is useful for reducing the
search space, a problem is that the TWU is a loose upper
bound on the utility of itemsets. For this reason, many item-
sets still need to be considered by algorithms relying on the
TWU measure, to extract the set of HUIs. This can result in
long execution times and high memory usage.

Many algorithms have been designed to discover HUIs
[3, 13, 23, 24, 26–28, 30, 37]. To reduce the search space
and mine HUIs efficiently, these algorithms have included
various methods to overestimate the utility of itemsets. Sev-
eral high utility itemset mining algorithms discover high
utility itemsets using the TWU measure and a two phase
approach. This includes algorithms such as Two-Phase [24],
UP-Growth+ [30], PB [20] and BAHUI [26]. In the first
phase, the algorithms overestimate the utility of itemsets to
obtain a set of candidate HUIs using the TWU measure and
other strategies. Then, in the second phase, they scan the
database again to calculate the utility of these candidates
and filter those that are not HUIs. Although these algorithms
are complete as they can find the whole set of HUIs, the
two phase approach can lead to considering and maintaining
a very large number of candidate itemsets in memory. The
cost of scanning the database for each itemset in the second
phase to calculate their utility is also very high. As a result,
these algorithms can be slow and consume a huge amount
of memory.

In recent years, to avoid the drawbacks of the two phase
approach, algorithms have been proposed to mine high util-
ity itemsets using a single phase. These algorithms can
directly calculate the utility of itemsets in memory with-
out having to repeatedly scan the database or maintain
candidates in memory. Moreover, they utilize tighter upper-
bounds and more efficient strategies to reduce the search
space, compared to two phase algorithms. The concept of
single phase algorithm was introduced in the HUI-Miner
algorithm [23] by using a novel structure called utility-list.
This structure stores all the information needed to calculate

the utility of itemsets and reduce the search space, with-
out repeatedly scanning the database. To discover HUIs, the
HUI-Miner algorithm first constructs a utility-list for each
item by scanning the database. Then, HUI-Miner recur-
sively builds utility-lists of larger itemsets by joining the
utility-lists of some of their subsets, i.e., without scanning
the database again. The HUI-Miner algorithm is a com-
plete algorithm as it can enumerate all high utility itemsets
with their utility values using the utility-list structure. In
terms of performance, it was shown that HUI-Miner out-
performs the state-of-the-art two phase HUIM algorithms
[23]. Nonetheless, the performance of HUI-Miner can still
be improved. An important observation is that the join oper-
ation for obtaining the utility-lists of itemsets is costly in
terms of runtime. To reduce the number of join operations
performed by HUI-Miner, Fournier et al. designed the Faster
High-Utility Itemset Mining (FHM) algorithm [13]. FHM
applies a strategy to eliminate low utility itemsets using
information about item co-occurrences. For each itemset
eliminated using this strategy, the join operation does not
need to be applied, thus reducing the execution time. It was
shown that this pruning strategy can greatly reduce the num-
ber of join operations, and that FHM [13] can be up to six
times faster than HUI-Miner.

The utility-list structure was proposed in HUI-Miner [23]
to discover HUIs in a single phase, and hence avoid draw-
backs of two-phase algorithms, which are to maintain a
large amount of candidates in memory and to scan the
database repeatedly to calculate the utilities of itemsets.
HUI-Miner utilizes utility-lists to store information about
the utilities of itemsets in transactions. This information
allows it to quickly derive the utilities of any itemset and
to calculate upper-bounds on the utilities of its supersets
for reducing the search space. To discover HUIs, HUI-
Miner scans the database to create a utility-list for each
item. Thereafter, HUI-Miner performs a depth-first search
to explore the search space of all itemsets containing more
than one item. During this search, the utility-list of each
itemset is constructed by joining the utility-lists of some of
its subsets, that is without scanning the database.

Creating the utility-lists of itemsets using the join is
costly. It requires a significant amount of memory, since
an algorithm has to maintain many utility-lists in mem-
ory during the search for HUIs. Moreover, in terms of
execution time, the complexity of building a utility-list
is also high [13]. In general, it requires to join three
utility-lists of smaller itemsets. Recently, improved versions
of the HUI-Miner algorithm called HUP-Miner [19] and
FHM [13] have been proposed by introducing additional
search space pruning strategies and optimizations. It was
shown that these algorithms can be up to 6 times faster
than HUI-Miner, and are the state-of-the-art algorithms for
HUIM. Although some algorithms [9, 13, 22, 31, 33] have

Q.-H. Duong et al.

introduced strategies to reduce the number of join opera-
tions, this operation is repeatedly performed to mine high
utility itemsets, and this high cost has a negative impact on
the performance, especially when the number of items is
huge or a database contains long transactions. Hence, join-
ing utility-lists remains the main performance bottleneck in
terms of execution time, and storing utility-lists remains the
main issue in terms of memory consumption [13]. Due to
the wide applications of the utility-list structure in high util-
ity pattern mining, there is an important need to propose a
more effective and efficient utility-list structure that can be
constructed in linear time and can reduce memory usage.

3 Preliminaries and problem definition

Let there be a set of items I = {i1, i2, . . . , im} represent-
ing products sold in a retail store. For each item ij ∈ I ,
the external utility of ij is a positive number representing
its unit profit (or more generally, its relative importance to
the user). A transaction database D is a set of transactions
denoted as D = {T1, T2, . . . , Tn}, where for each trans-
action Td ∈ D, the relationship Td ∈ I holds. For each
transaction Td ∈ D, d is a unique integer that is said to
be the TID (transaction identifier) of Td . The internal util-
ity of an item ij in a transaction Td is denoted as q(i, Td).
It is a positive number representing the purchase quantity
of the item ij in Td . A set of items X = {i1, i2, . . . ,
il} ⊆ I containing l items is said to be an itemset of length
l, or alternatively, an l-itemset. In the rest of this paper, the
notation xy will be used to indicate the itemset obtained by
concatenating two items x and y. Furthermore, the notation
XY will be used to refer to the union of two itemsets X and
Y , i.e., X∪Y.

Example 1 Consider the transaction database depicted in
Table 1, which comprises five transactions denoted as T1,
T2, T3, T4, and T5. This database will be used as running
example. This database contains seven items denoted by the
letters a to g, that is I = {a, b, c, d, e, f, g}. Table 2 indicates
the external utility of each item (e.g., unit profit). The exter-
nal utilities of items a, b, c, d, e, f,and g are 5, 2, 1, 2, 3, 1,
and 1, respectively. The itemset bc is a 2-itemset appearing

Table 1 A transaction database

TID Transaction Transaction Utility

T1 (a,1), (c,1), (d,1) 8

T2 (a,2), (c,6), (e,2), (g,5) 27

T3 (a,1), (b,2), (c,1), (d,6),(e,1),(f,5) 30

T4 (b,4), (c,3), (d,3), (e,1) 20

T5 (b,2), (c,2), (e,1), (g,2) 11

Table 2 External utility values of items {a, b, c, d, e, f, g}
Item a b c d e f g

External utility 5 2 1 2 3 1 1

in transactions T3, T4, and T5. In transaction T4, the items b,
c, d , and e have internal utilities (purchase quantities) of 4,
3, 3, and 1, respectively.

In high utility itemset mining, the utility measure is used
to assess how important (e.g., how profitable) a pattern is.

Definition 1 (Utility of an item in a transaction) Let there
be an item i and a transaction Td such that i ∈ Td . The util-
ity of i in Td is the product of the internal utility (purchase
quantity) of item i in Td by the external utility (unit profit)
of i, that is u(i, Td) = q(i, Td) × p(i).

For example, in the database of Table 1, u(a, T1) = 1 ×
5 = 5, and u(c, T1) = 1 × 1 = 1.

Definition 2 (Utility of an itemset in a transaction) For an
itemset X and a transaction Td , the utility of X in Td is a
positive number defined as u(X, Td) = ∑

i∈X u(i, Td).

For instance, consider the utility of itemset ac in transac-
tion T3 for the database of Table 1. The utility of ac in T3
is calculated as u(ac, T3) = 1 × 5 + 1 × 1 = 6. Similarly,
the utility of bc in transaction T4 is calculated as u(bc, T4)

= 4 × 2 + 3 × 1 = 11.

Definition 3 (Transaction utility and total utility) The util-
ity of a transaction Td is the sum of the utility values
of items appearing in that transaction, that is T U(Td) =
u(Td, Td). The total utility of a database D is the sum of
the utility values of all transactions, that is T UD(D) =∑

Td∈D T U(Td, Td).

For example, in Table 1, T U(T1) = 8, T U(T2) = 27,
T U(T3) = 30, T U(T4) = 20, T U(T5) = 11. The total
utility of database D is T UD(D) = T U(T1) + T U(T2) +
T U(T3) + T U(T4) + T U(T5) = 8 + 27 + 30 + 20 + 11 = 96.

Definition 4 (Utility and relative utility of an itemset) Let
there be a database D and an itemset X. The utility of
X in D is defined as u(X) = ∑

X⊆Td∧Td∈D u(X, Td).
The relative utility of X in D is defined as ru(X) =
u(X)/T UD(D).

For instance, the utility of the itemset ac in the database
of Table 1 is u(ac) = u(ac, T1) + u(ac, T2) + u(ac, T3) =
6 + 16 + 6 = 28, while the relative utility of ac in that
database is ru(ac) = 28/96 = 0.29.

Efficient high utility itemset mining using buffered utility-lists

Definition 5 (Low utility itemset and high utility itemset)
Let the minimum utility threshold (abbreviated as minutil)
be a positive number specified by the user such that 0 <

minutil < T UD(D). Consider an itemset X. It is said to
be a high utility itemset (HUI) if its utility is no less than
minutil. Otherwise, X is said to be a low utility itemset.

Definition 6 (High utility itemset mining) Given a min-
imum utility threshold minutil and a database D, the
problem of high utility itemset mining is to enumerate all
high utility itemsets appearing in D.

Note that the problem of high utility itemset mining can
also be defined in terms of the relative utility of itemsets.
Given a relative minimum utility threshold r minutil =
minutil/T UD(D), an itemset X is a high utility itemset if
and only if ru(X) ≥ r minutil.

In FIM, the powerful downward closure property is
employed for reducing the search space. However, this prop-
erty does not hold with the utility measure in HUIM. To
restore this property, the TWU measure was introduced
and used as an upper-bound on the utility. The TWU mea-
sure is defined as follows and has the following important
properties [24].

Definition 7 (Transaction-weighted Utilization) Let
there be an itemset X and a database D. The
Transaction-Weighted Utilization (TWU) [24] of
X in D is denoted as T WU(X) and defined as
T WU(X) = ∑

Td∈D∧X⊆Td
T U(Td).

Property 1 (Overestimation [24]) The utility of an itemset
X is less than or equal to its TWU, that is T WU(X) ≥
u(X).

For instance, consider the transactions T1, T2, and T3 in
the database of the running example. Their TWU values are
8, 27, and 30, respectively. The TWU of the item a is calcu-
lated as T WU(a) = T U(T1)+T U(T2)+T U(T3) = 8 + 27
+ 30 = 65. The following property has been used by several
HUIM algorithms to reduce the search space.

Property 2 (Search space reduction using the TWU [24])
For an itemset X, if T WU(X) < minutil, it follows that X
and its supersets are low utility itemsets.

For example, the transaction-weighted utilization of item
f is T WU(f) = T U(T3) = 5 + 4 + 1 + 12 + 3 + 5 = 30.
Table 3 shows the transaction utilities of all transactions in
D and the T WU values of each item.

The proposed algorithm relies on the novel utility-list
buffer structure inspired by the utility-list structure [23]
to mine high utility itemsets in a single phase. The next

Table 3 The TU and TWU values of transactions for the running
example

Item Name a b c d e f g

TWU 65 61 96 58 88 30 38

TID T1 T2 T3 T4 T5

TU 8 27 30 20 11

paragraphs present definition of the utility-list structure and
its key properties [23].

Definition 8 (Utility-list) Let � be a total order on items
from I , and X be an itemset appearing in a database D.
The utility-list of X is denoted as ul(X). It contains a tuple
(tid, iutil, rutil) for each transaction Ttid whereX appears
(X ⊆ Ttid). The iutil element of a tuple for a transac-
tion Ttid stores the utility of X in the transaction Ttid , i.e.,
u(X, Ttid). The rutil element of a tuple stores the value∑

i∈Ttid∧i�x∀x∈X u(i, Ttid), which is called the remaining
utility of X [23].

Example 2 In the running example, the utility-list of the
item a is {(T1, 5, 3)(T2, 10, 17)(T3, 5, 25)}. The utility-list
of the item e is {(T2, 6, 5)(T3, 3, 5)(T4, 3, 0)(T5, 3, 2)}. The
utility-list of the itemset ae is {(T2, 16, 5),(T3, 8, 5)}.

Two important properties of utility-lists have been pro-
posed to determine the utility of an itemset and to reduce the
search space, respectively [23].

Property 3 (Calculating the utility using the sum of iutil val-
ues [23]) The utility of an itemset X (denoted as u(X)) can
be calculated by performing the sum of the iutil values in
the utility-list ul(X). If that sum is less than the minutil

threshold, X is a low utility itemset. Otherwise, it is a high
utility itemset [23].

Property 4 (Pruning using an utility list’s iutil and rutil val-
ues [23]) Let X and Y be two itemsets. It is said that Y is
an extension of X if Y can be obtained by adding an item
c to X, where c � i, ∀i ∈ X. The sum of the iutil and
rutil values in the utility-list ul(X) is an upper-bound on
the utility of Y and any other transitive extension of X. As a
consequence, if this sum is less than the minutil threshold,
it follows that any itemset that is a transitive extension of X

must be a low utility itemset, and thus be pruned.

4 The proposed utility-list buffer method

As proposed in the HUI-Miner algorithm [23], the utility-
list of an itemset Pxy can be constructed without accessing

Q.-H. Duong et al.

the database by joining the utility-lists of some subsets of
Pxy. For instance, consider some itemsets Px, Py, and
Pxy, where Px and Py are extensions of an itemset P

obtained by appending an item x and an item y, respectively.
To build the utility-list of the itemset Pxy, Algorithm 1 [23]
is applied. The algorithm first considers each element in the
utility-list ul(x). For each such element, the algorithm ver-
ifies if there exists an element having the same transaction
identifier in ul(y). If such an element is found, the algo-
rithm applies a binary search on the utility-list of the itemset
P to check if an element in the utility-list of P has the same
transaction identifier. The time complexity of this compari-
son of utility-lists is O(m log nz), where m, n, and z are the
number of entries in ul(x), ul(y), and ul(P), respectively.
In terms of space complexity, a utility-list has a size propor-
tional to O(n) in the worst case, where n is the number of
transactions. The worst case occurs when a utility-list has
an entry for each transaction of the database. The overall
worst-case time complexity is thus roughly O(n3).

The proposed method is based on the following observa-
tions. Joining utility-lists is costly both in terms of runtime
and memory consumption. In utility-list-based algorithms,
memory has to be allocated to store each utility-list. Since
millions of itemsets are often considered by HUI mining
algorithms, the memory used for storing utility-lists can be
quite large. Moreover, because utility-lists can contain many
entries, the time required for allocating and reusing memory
for utility-lists can be quite important. In addition, a related

issue is that a utility-list can be kept in memory during a long
period of time by utility-list-based algorithms, even if the
corresponding itemset is identified as not being a HUI
and/or is not extended by the search procedure to find HUIs.
This can lead to high peaks of memory usage. In conclusion,
there is an important issuewith howmemory ismanaged by the
state-of-the-art utility-list-based algorithms. Our experimental
evaluation in Section 5 will also show this in more details.

To address this issue, this section proposes a data struc-
ture named utility-list buffer, designed to both quickly
access information stored in utility-lists and more effi-
ciently manage the memory used for storing the information
of utility-lists. The proposed utility-list buffer structure is
designed for replacing traditional utility-lists in any utility-
list-based algorithms. As it will be shown in the experi-
mental evaluation, using the utility-list buffer structure leads
to considerably lower memory usage and faster execution
times for utility-list-based algorithms.

This section first introduces the utility-list buffer struc-
ture. Then, the next subsection explains how it is employed
to mine high utility itemsets. In particular, an efficient
ULB-Miner algorithm is presented based on the designed
utility-list buffer structure.

4.1 The utility-list buffer structure

The utility-list buffer structure is proposed to tackle the afore-
mentioned limitations of one-phase utility-list-based algo-
rithms for mining high utility itemsets. The utility-list buffer
structure is introduced by the following definitions and proper-
ties. Then, an examplewill be given to illustrate the definitions.

Definition 9 (Utility-list buffer structure) Let I be the set
of items in a database D. Let T idD be the set of transaction
identifiers in the database D. The utility-list buffer structure
for the database D is denoted as UTLBuf. The structure is
designed like a memory pipeline to store information about
itemsets that would be normally stored in their utility-lists.
The utility-list buffer of a database stores a set of tuples of
the form (tid ∈ T idD, iutil ∈ R, rutil ∈ R). These tuples
called data segments, store the tuples normally contained
in traditional utility-lists. To quickly access the information
stored in the utility-list buffer, a set of index segments are
created, where an index segment SUL(X) indicates where
the information about an itemset X is stored in the utility-
buffer. Index segments allow fast accessibility of the data
stored in the utility-buffer and are described next.

Definition 10 (Summary of Utility-list) The index segment
of an itemset X in a database D, also called the summary of
utility-list of itemset X, is denoted as SUL(X). It is defined
as a tuple having the form (X, StartPos, EndPos, SumIu-
til, SumRutil). The SumIutil element stores the sum of the

Efficient high utility itemset mining using buffered utility-lists

iutil values in ul(X), that is
∑

ul(X).iutil. The SumRu-
til element stores the sum of rutil values in the utility-list
of X, that is

∑
ul(X).rutil. The StartPos and EndPos ele-

ments respectively indicate the start index and end index of
the data segments in the utility-list buffer structure UTLBuf,
where the information that would be normally contained in
the utility-list of X is stored.

Definition 11 (Summary List) Let I be the set of items in
a database D. A structure called Summary List is further
defined. It is a memory pipeline denoted as SULsD , and
defined as SULsD = {SUL(X), X ⊆ I }.

The proposed utility-list buffer structure is used as fol-
lows by the proposed algorithm. When the algorithm con-
siders an itemset X from the search space as a potential
HUI and as an itemset that could be extended to find other
HUIs, the algorithm stores the utility-list ofX in theUTLBuf
structure by temporally inserting its information in the data
segments ofUTLBuf from the StartPos to EndPos positions.
Then, when needed, the algorithm accesses this information
by reading the values in the UTLBuf from the StartPos to
EndPos positions. Thanks to the utility-buffer structure, data
can be quickly accessed. For efficient memory management,
the temporary memory that is allocated for an itemset X in
the UTLBuf structure is reused for storing the utility-lists
of other itemsets when it is found that the utility-list of the
itemset X is not needed anymore by the search process. In
this case, the memory is recalled and reused for other candi-
date itemsets (this idea will be described in more details in
Section 4.4).

In terms of implementation, we implement the proposed
structures as follows. Four array lists are created, named
TIDs, Iutils, Rutils and SULs. The three first lists store the
information of the UTLBuf structure, and the fourth list is
the SULs structure. These lists are initialized as empty and
their sizes are increased when they are full and more space
is needed. Lists are used for storing the utility-lists of item-
sets, and when the utility-list of an itemset is not needed, the
memory is reused to store other utility-lists. This reduces the
time for allocating memory and the overall memory usage
for mining HUIs.

The proposed algorithm first creates the utility-list of all
single items according to the total order � by performing a
database scan. For example, consider the utility-list of the
item f . In transaction T3, we have that u(f, T3) = 5 and
ru(f, T3) = 25. The item f only appears in the transac-
tion T3. Hence, the summary of f is stored in the SULs
list and contains the following information: the item is f ,
its start position index in the lists is 0, its information ends
at position index 1, the sum of its utilities is 5, and the
sum of its remaining utilities is 25. The state of the utility-
list buffer after inserting the item f is depicted in Fig. 1.

Thereafter, the other items are inserted in the same man-
ner. The resulting state of the utility-list buffer is depicted
in Fig. 2. In this figure, it can be seen that a utility-list seg-
ment is used for each item. Accessing a utility-list stored
in the utility-buffer is efficient, thanks to the SULs struc-
ture. For example, assume that the algorithm is currently
processing the itemset X = {a}. To access its utility-list,
the summary information of {a} is obtained from the SULs.
After the summary information of {a} is obtained, its utility-
list UL({a}) is read in UTLBuf from the SULs({a}).StartPos
to SULs({a}).EndPos positions (in red color in Fig. 2).

4.2 An efficient utility-list segment construction method

The previous subsection has explained how the proposed
data structures are used to store the utility-lists of itemsets
containing a single item. This subsection explains the more
general case where itemsets can have two or more items.

As it has been pointed out in traditional utility-list-based
algorithms [13, 23], the utility-list of a 2-itemset xy can be
constructed without scanning the database by joining (inter-
secting) the utility-lists of its items x and y. Moreover, the
utility-list of any k-itemset {i1 . . . ik−1ik} (k ≥ 3) can be
obtained by intersecting the utility-lists of three itemsets:
{i1 . . . ik−2ik−1}, {i1 . . . ik−2} and {i1 . . . ik−2ik}. The basic
procedure for intersecting utility-lists was proposed in the
HUI-Miner algorithm [23]. This procedure is given in Algo-
rithm 1, where the utility-list of an itemset Pxy is built by
intersecting the utility-lists of the itemsets Px, Py, and P .
P is the prefix itemset, and x and y are items. For each
element in the utility list ul(x), the procedure checks if an
element has the same transaction identifier in the utility-
list ul(y). If yes, then a binary search is performed on the
utility-list of P to find an element with the same transaction
identifier. Hence, the time complexity of this procedure is
O(sxlog(sy)), where sx and sy are respectively the number
of entries in ul(x) and ul(y).

Although this algorithm is useful for constructing utility-
lists, it cannot be directly applied to utility-lists stored
in the proposed utility-buffer structure. Thus, an adapted
utility-list segment construction procedure is proposed and
depicted inAlgorithm2. This procedure constructs a utility-list
in the next free data segments of the utility-list buffer and

Fig. 1 The utility-list buffer after inserting the item f

Q.-H. Duong et al.

Fig. 2 The utility-list buffer after inserting all single items

updates the Summary List SULs structure to allow the quick
retrieval of the utility-list from the buffer when needed.

Since transaction identifiers (Tids) in utility-lists are
ordered in ascending order, an efficient way of identifying

transactions that are common to two utility-lists ul(x) and
ul(y) are to read the two utility-lists at the same time by
reading the Tids sequentially in each utility-list. The com-
plexity of this search method is O(sx + sy), which is
less than O(sxlog(sy)) for the basic utility-list construc-
tion method. Based on this observation, we introduce an
improved construction procedure named ULB-Construct,
which is presented in Algorithm 3.

Efficient high utility itemset mining using buffered utility-lists

4.3 High utility itemset mining using the Utility-list
buffer structure

Having presented the proposed utility-buffer structure and
how utility-lists are constructed and stored in that structure,
this subsection proposes a novel algorithm named ULB-
Miner for discovering all high utility itemsets using that
structure.

After constructing the initial utility-list buffer from an
input database, the algorithm can efficiently mine all high
utility itemsets by employing the utility-list buffer. The
proposed approach for mining HUIs is inspired by the HUI-
Miner [23] and FHM [13] algorithms, but adapted to work
with the novel utility-buffer structure. In particular, it inte-
grates the novel ULB-construct procedure, described in the
previous subsection, that constructs utility-list segments in
linear time. The main procedure of ULB-Miner is shown
in Algorithm 4. The input is a transaction database D and
the minutil threshold, and the output is the high utility-
itemsets. The main procedure performs the following steps.
The algorithm first scans the database to calculate the TWU
of all items (line 1). Then, based on these TWU values, the
set I ∗ is created, which contains all items having a TWU
greater than or equal to the minutil threshold (line 2). The
TWU values of items are used to build a total order � on
items, which is the ascending order of TWU values (line
3). The algorithm then scans the database again (line 4) to
reorder items in transactions according to that total order.
At the same time, the utility-list buffer of all single items
i ∈ I and the Estimated Utility Co-occurrence Structure
(EUCS) [13] are built. The EUCS stores the TWU values
of all pairs of items. It will be discussed in more details in
the next subsection. After that the algorithm starts a recur-
sive depth-first search by invoking the Search procedure
(line 5).

The Search procedure is presented in Algorithm 5. It per-
forms the following operations. For each extension Px of
P , if the sum of the iutil values of Px is no less than minu-
til, then Px is a high utility itemset based on Property 3.
Hence, the itemset Px is output (lines 2-4). Then, if the sum
of the SumIutil and SumRutil values of Px is greater than
or equal to minutil, the extensions of Px are considered for
further exploration (line 5), based on Property 4. This pro-
cess is done by combining Px with each extension Py of P
such that y � x to produce a larger itemset Pxy (line 9). The
utility-list segment of Pxy is then constructed by calling an
improved version of the ULB-Construct procedure, which
will be presented in the next subsection (Algorithm 6). This
procedure joins the utility-list segments of P , Px and Py

(line 10). Then, a recursive call to the Search procedure

Q.-H. Duong et al.

with Pxy is done to calculate the utility of that itemset and
recursively explore its extensions (line 15).

As other utility-list based algorithms for mining high util-
ity itemsets [13, 23], the Search procedure starts from single
items and then recursively explores the search space of item-
sets by appending single items, while reducing the search
space using Properties 3 and 4. It thus can be easily seen
that this process is correct and complete to discover all high
utility itemsets.

4.4 Implementation optimizations

The Estimated Utility Co-Occurrence Structure (EUCS)
[13] is a very useful structure for pruning the search space.
The EUCS has been designed to avoid performing join oper-
ations to construct utility-lists of itemsets when some spe-
cific conditions are met. It was demonstrated that this struc-
ture and the corresponding Estimated Utility Co-occurrence
Pruning (EUCP) strategy can considerably reduce the num-
ber of join operations for HUI mining using utility-lists.
Hence in the proposed framework, this structure and its
search space pruning strategy are also used to reduce the
search space and increase the performance of the proposed
algorithm. This structure is used in line 8 of Algorithm 5.

Moreover, to obtain better performance for utility-list
construction, an approach is proposed in [9] for abandoning
utility-list construction early named EA (Early Abandoning)
strategy. This strategy and its stopping criterion are designed
and employed during the construction of utility-lists of all
candidate itemsets to avoid completely constructing utility-
lists. The utility-list construction process is immediately
stopped if a specific condition is met. This strategy can
reduce the runtime and memory consumption of the algo-
rithms considerably. Therefore, EA is also implemented
in the UTLBuf framework. Details of how the EA strat-
egy is implemented in the UTLBuf framework are given in
Algorithm 6 using the variable EACriterion.

Finally, a novel optimization is proposed to reuse mem-
ory in the utility-buffer. It is based on the following obser-
vation. In utility-list based algorithms, the utility-list of
an itemset containing more than one item is constructed
by intersecting the utility-lists of some of its subsets. For
instance, the utility-list of an itemset Pxy, ul(Pxy), can
be obtained by intersecting the utility-lists of itemsets P ,
Px and Py. However, after constructing the utility-list of
Pxy, it is possible that Pxy is considered to not be a
HUI according to Property 3, and also to not be useful
for generating larger HUIs according to Property 4. Hence,
the memory allocated for storing the utility-list of Pxy

is wasted and could be reused for storing other utility-
list(s). This is a serious problem because the construction of
utility-lists is a process that is repeatedly performed by

the search procedure. To save memory, this paper proposes
the following strategy for memory reutilization. If an item-
set Pxy is not a candidate for exploring the search space,
then the memory allocated for storing its utility-list will be
recalled and reused for the next potential candidates that
will be considered by the search procedure. All the mem-
ory used for Pxy will be reused and new memory is only
allocated when the utility-buffer is full. The pseudo-code
of the improved ULB-Construct procedure integrating this
strategy is shown in Algorithm 6.

Efficient high utility itemset mining using buffered utility-lists

Fig. 3 The initial utility-list buffer

Fig. 4 The utility-list buffer after inserting the utility-list of gb

Fig. 5 The utility-list buffer after inserting the utility-list of ga

Fig. 6 The utility-list buffer after inserting the utility-list of ge

Fig. 7 The utility-list buffer after inserting the utility-list of gc

Q.-H. Duong et al.

Table 4 Characteristics of the datasets

Dataset #Transactions #Distinct items Avg. trans. length

Connect 67,557 129 43

Chainstore 1,112,949 46,086 7.2

Chess 3196 75 37

Foodmart 4141 1559 4.4

Kosarak 990,000 41,270 8.1

Retail 88,162 16,470 10.3

4.5 An illustrative example

To give a better understanding of how the proposed ULB-
Miner algorithm works, and at the same time show the
benefits of the designed utility-list buffer structure, this
subsection provides a detailed example. In this example,
ULB-Miner is applied on the database D shown in Table 1
with minutil = 35 and the external utilities of items are
shown in Table 2.

Step 1. The database D is scanned to calculate the TWU
of single items. The resulting TWU values of items
are shown in Table 3. The set of single items
I ∗ sorted by ascending TWU values and having
TWU ≥ 35 is {g, d, b, a, e, c}. Item f is dismissed
because TWU(f) = 30 < 35 = minutil.

Step 2. The initial UTLBuf and SULs structures for items
in I ∗ are constructed. The result is shown in Fig. 3.

Step 3 The Search procedure is invoked to perform the
recursive search.

(a) The procedure explores the search space start-
ing from item g. Because SULs(g).SumIutil =
7 < minutil = 35, g is not a high utility item-
set. But SULs(g).SumIutil + SULs(g).SumRutil
= 7 + 31 = 38 > minutil. Thus, extensions of g

should be considered as potential high utility
itemsets.

(b) The algorithm appends each item y to g such
that y � g and y ∈ I ∗ to form larger itemsets.
The algorithm first considers appending d to
g to form the larger itemset gd . Because g and
d never appear together (an empty utility-list
is constructed), the itemset gd is not further
considered.

(c) Then, the algorithm considers appending b to
g to create the itemset gb. The utility-list of
gb is inserted into the utility-buffer UTLBuf
as shown in Fig. 4 (cells filled with white
color). The sum of the Iutils and RUtils val-
ues of gb is 6 + 5 = 11 < minutil. Hence,

the itemset gb is not considered as a candi-
date by the search procedure. Note that at this
point, previous utility-list-based algorithms
would allocate new memory for storing the
utility-lists of the following candidates. The
proposed method will instead reuse the mem-
ory allocated for the utility-list of gb for stor-
ing the utility-lists of the following candidates.

(d) The algorithm next considers the itemset ga.
The state of the utility-list bufferUTLBuf after
inserting the utility-list of ga is shown in Fig. 5.
The sum of the Iutils and RUtils values of
ga is 15 + 12 = 27 < minutil. Thus, ga will
not be considered by the search procedure to
generate further extensions. This memory will
be reused for storing the utility-lists of the
following candidates.

(e) The following item e is appended to itemset g
to form the itemset ge. The algorithm inserts
the utility-list of ge into the utility-buffer. The
resulting state of the buffer is shown in Fig. 6.
The itemset ge is not extended by the search
procedure because the sum of the Iutils and
RUtils values of ge is 11 + 5 + 6 + 2 =
24 < minutil. This memory will thus be
reused to store the utility-lists of the following
candidates.

(f) Then, the item c is appended to g to create the
itemset gc. The state of the utility-list buffer
after inserting the utility-list of gc is shown in
Fig. 7. The itemset gc is also not a high utility
itemset due to its low utility.

Step 4 The search for high utility itemsets is then contin-
ued with other items until no more itemsets can
be generated. The result is the set of all high util-
ity itemsets found in the dataset D. This set is
{dbec : 40, dbe : 36}, where the number beside
each itemset indicates its utility.

In the above example, the proposed algorithm relying
on the novel utility-list buffer allocates only 2 entries in
the utility-buffer for storing the utility-lists of extensions
of the item g. Previous utility-list-based algorithms such
as HUI-Miner and FHM would utilize 6 entries to store
the utility-lists, due to the lack of a mechanism for reusing
memory. If we consider the full search space for the previ-
ous example, the proposed algorithm only needs 33 entries
in the utility-buffer and reuses 39 times some existing
entries to store utility-lists. This simple example shows that
the proposed utility-list buffer structure is useful for mining
high utility itemsets while reusing memory.

Efficient high utility itemset mining using buffered utility-lists

0

100

200

300

400

500

600

700

800

900

1000

70 60 50 40 30

Ru
n�

m
e

(s
)

Minimum U�lity Threshold (%)

Connect

HUI-Miner HUI-Miner_ULB FHM FHM_ULB ULB-Miner

(a)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.1 0.08 0.06 0.04 0.02 0.01

Ru
n�

m
e

(s
)

Minimum U�lity Threshold (%)

ChainStore

HUI-Miner HUI-Miner_ULB FHM FHM_ULB ULB-Miner

(b)

0

500

1000

1500

2000

2500

3000

3500

30 28 26 24 22 20 18 14

Ru
n�

m
e

(s
)

Minimum U�lity Threshold (%)

Chess

HUI-Miner HUI-Miner_ULB FHM FHM_ULB ULB-Miner

(c)

0

1

1

2

2

3

3

4

4

0.1 0.08 0.06 0.04 0.02 0.01

Ru
n�

m
e

(s
)

Minimum U�lity Threshold (%)

Foodmart

HUI-Miner HUI-Miner_ULB FHM FHM_ULB ULB-Miner

(d)

0

10

20

30

40

50

60

70

80

4 3.5 3 2.5 2 1.5 1

Ru
n�

m
e

(s
)

Minimum U�lity Threshold (%)

Kosarak

HUI-Miner HUI-Miner_ULB FHM FHM_ULB ULB-Miner

(e)

0

20

40

60

80

100

120

140

0.1 0.08 0.06 0.04 0.02 0.01

Ru
n�

m
e

(s
)

Minimum U�lity Threshold (%)

Retail

HUI-Miner HUI-Miner_ULB FHM FHM_ULB ULB-Miner

(f)

Fig. 8 Runtime comparison on different datasets

Q.-H. Duong et al.

Table 5 Comparison of peak
memory usage (MB) Dataset HUI-Miner HUI-Miner ULB FHM FHM ULB ULB-Miner

Connect 452.6 399.9 1516.9 398.1 368.6

Chainstore 1367.3 1021.1 2792.7 2396.9 2402.7

Chess 752.4 140.1 1319.7 209.7 208.3

Foodmart 423.4 257.2 68.3 40.1 41.3

Kosarak 1060.2 910.1 1270 1030 1015.7

Retail 803.53 442.1 670.22 544.7 544.6

5 Performance study

We performed a series of large scale experiments to evalu-
ate the performance of the proposed ULB-Miner algorithm
employing the designed utility-list buffer structure. The
algorithms were implemented by extending the SPMF open-
source Java data mining library [10]. The source code was
compiled using the J2SDK 1.7.0, and the memory mea-
surements were done using the standard Java API. The
experiments were run on a computer equipped with an Intel
core i3 processor 2.4 GHz and 4 GB of RAM, running the
Windows 7 operating system.

5.1 Experimental setup

Both real and synthetic datasets having varied character-
istics were used in the experiments. These datasets are
standard benchmark datasets used to evaluate HUIM algo-
rithms. The characteristics of these datasets are described
in Table 4, where #Transactions, #Distinct items and Avg.
trans. length indicate the number of transactions, the num-
ber of distinct items and the average transaction length,
respectively. These datasets were selected because they
are standard benchmark datasets and they have varied
characteristics.

We used two real-world customer transaction datasets
named Chainstore1 and Foodmart.2 Chainstore is a very
large dataset consisting of transactions from a Californian
retail store, while Foodmart is a small dataset of customer
transactions obtained from the Microsoft Food-Mart 2000
database. Retail3 is a sparse dataset containing customer
transactions from a Belgian retail store. Kosarak4 is a very
sparse dataset with moderately short transactions. Lastly,

1http://cucis.ece.northwestern.edu/projects/DMS/
MineBenchDownload.html
2https://www.microsoft.com/en-us/download/details.aspx?id=51958
3http://fimi.cs.helsinki.fi/data/
4http://fimi.cs.helsinki.fi/data/

two dense datasets named Chess5 and Connect5 were used.
Although these two datasets are not retail data, they are
often used in the pattern mining literature as benchmark
datasets to evaluate the performance on dense data. Chess
is especially a quite challenging dataset for most mining
algorithms because it contains many long itemsets. The
Chainstore and Foodmart datasets already contain real unit
profits and purchase quantities. For other datasets, external
utilities of items are generated between 1 and 1000 by using
a log-normal distribution and quantities of items are gener-
ated randomly between 1 and 5, as the settings of previous
studies [13, 23].

5.2 Running time

The performance of ULB-Miner is compared with two
state-of-the-art HUI mining algorithms, namely HUI-Miner
and FHM. These algorithms were chosen since they are
state-of-the art HUIM algorithms. These algorithms are
also based on the traditional utility-list structure. More-
over, we also prepared two improved versions of HUI-Miner
and FHM, named HUI-Miner ULB and FHM ULB, respec-
tively. These versions employ the proposed utility-list buffer
structure and the basic utility-list segment construction pro-
cedure (Algorithm 2).

We ran the compared algorithms on each dataset while
decreasing theminutil threshold until the algorithms became
too long to execute, ran out of memory or a clear winner
was observed. For each dataset, we recorded the execution
time and memory consumption. The comparison of execu-
tion times is shown in Fig 8. As presented in these figures,
the HUI-Miner ULB and FHM ULB versions are faster
than the original implementations of these algorithms on all
datasets. Especially, when minutil is decreased, there is a
big gap between the runtimes of the original and improved
versions. The proposed ULB-Miner algorithm is faster than
the compared algorithms when minutil is small on the
Kosarak dataset. For the remaining datasets, the proposed

5http://www.philippe-fournier-viger.com/spmf/index.php?
link=datasets.php

http://cucis.ece.northwestern.edu/projects/DMS/MineBenchDownload.html
http://cucis.ece.northwestern.edu/projects/DMS/MineBenchDownload.html
https://www.microsoft.com/en-us/download/details.aspx?id=51958
http://fimi.cs.helsinki.fi/data/
http://fimi.cs.helsinki.fi/data/
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php

Efficient high utility itemset mining using buffered utility-lists

0

0

0

0

0

0

1

10

100

1000

10000

70 60 50 40 30

N
um

be
r o

f u
�l

ity
-li

st
s(

M
ill

io
ns

)

Minimum U�lity Threshold (%)

Connect

use_UTLBuf not_Use_UTLBuf

(a)

0

5

10

15

20

25

30

35

0.1 0.08 0.06 0.04 0.02 0.01

N
um

be
r o

f u
�l

ity
-li

st
s(

M
ill

io
ns

)

Minimum U�lity Threshold (%)

ChainStore

use_UTLBuf not_Use_UTLBuf

(b)

0

0

0

0

0

0

1

10

100

1000

10000

30 28 26 24 22 20 18 16

N
um

be
r o

f u
�l

ity
-li

st
s(

M
ill

io
ns

)

Minimum U�lity Threshold (%)

Chess

use_UTLBuf not_Use_UTLBuf

(c)

0

100

200

300

400

500

600

0.1 0.08 0.06 0.04 0.02 0.01

N
um

be
r o

f u
�l

ity
-li

st
s(

M
ill

io
ns

)

Minimum U�lity Threshold (%)

Foodmart

use_UTLBuf not_Use_UTLBuf

(d)

0

5

10

15

20

25

30

35

40

4 3.5 3 2.5 2 1.5 1

N
um

be
r o

f u
�l

ity
-li

st
s(

M
ill

io
ns

)

Minimum U�lity Threshold (%)

Kosarak

use_UTLBuf not_Use_UTLBuf

(e)

0

2

4

6

8

10

12

0.1 0.08 0.06 0.04 0.02 0.01

N
um

be
r o

f u
�l

ity
-li

st
s(

M
ill

io
ns

)

Minimum U�lity Threshold (%)

Retail

use_UTLBuf not_Use_UTLBuf

(f)

Fig. 9 Comparison of the number of utility-lists created by allocating new memory when using or not using the utility-list buffer structure

algorithm is the fastest for all minutil values. The com-
pared algorithms are one-phase algorithms employing the
traditional utility-list structure, which perform the costly

utility-list intersection operation. To reduce this cost, ULB-
Miner employs the designed efficient utility-list segment
construction method to quickly search for transactions that

Q.-H. Duong et al.

are common to two utility-list segments. This considerably
reduces its execution time.

5.3 Memory consumption

Table 5 compares the peak memory usage of the algorithms
on the six datasets when the minutil threshold is set to the
smallest values used in the previous experiment. All mem-
ory measurements were done using the standard Java API.
By observing these results, it is found that the proposed
utility-list buffer structure reduces the memory consumption
of the HUI-Miner and FHM algorithms on all datasets. The
FHM ULB and ULB-Miner algorithms consume almost
the same amount of memory on the experimental datasets
because they employ similar strategies. Both FHM ULB
and ULB-Miner consume less memory than FHM. The best
results are obtained on the Chess and Connect datasets.
There, the memory consumption is reduced by up to 4 and
6 times, respectively. This can be explained as follows.
These datasets are dense with long transaction and many
items. As a result, the algorithms generate a huge amount of
candidates. But the proposed ULB-Miner algorithm reuses
most of the memory for storing utility-lists thanks to its
utility-buffer structure, and it thus have a low memory
consumption. Similar results are also obtained when com-
paring the HUI-Miner and HUI-Miner ULB algorithms.
HUI-Miner ULB consumes less memory than HUI-Miner
on all datasets. The best result is obtained on the Chess
dataset. Here, the gap in terms of memory usage is clear and
large. The gap shrinks a bit due to the EUCS structure. But
it is an acceptable trade-off when considering the runtime
performance. Overall, the results depicted in Table 5 show

that the proposed utility-list buffer structure is efficient in
terms of memory consumption. In some cases, the proposed
method can reduce memory consumption by up to 6 times.

5.4 Comparison on the number of utility-lists

To analyze in more details the memory consumption of the
proposed algorithm, we performed an experiment to com-
pare the number of utility-lists created by allocating new
memory when using the designed utility-list buffer struc-
ture and when not using that structure. For this experiment,
a version of the proposed ULB-Miner that employs the tra-
ditional utility-list structure [23] was prepared (i.e., that
does not use the novel utility-list buffer structure). Then, the
number of utility-lists generated by allocating new memory
was measured for both versions of the algorithm on each
dataset. Figure 9 shows the comparison.

As presented in this figure, employing the designed
utility-list buffer structure can greatly reduce the number
of utility-lists created by allocating new memory during
the mining process, especially for dense and long transac-
tion datasets such as Chess. When the minsup threshold
is set to small values, the difference in terms of number
of generated utility-lists becomes clear and large. The rea-
son is that for these datasets, there are many extensions for
each considered itemset. Hence, the number of utility-lists
generated during the process of itemset extension is huge
if the traditional utility-list structure is used. Fortunately,
using the proposed utility-list buffer reduces the need to
allocate new memory for utility-lists during the search by
reusing the memory used for storing previously generated
utility-lists.

0

20

40

60

80

100

120

140

2K 4K 6K 8K 10K

Ru
n�

m
e

(s
)

Number of dis�nct items

T10I4NXKD100K

HUI-Miner HUI-Miner_ULB FHM FHM_ULB ULB-Miner

(a) Varied number of items

0

20

40

60

80

100

120

140

160

100K 200K 300K 400K 500K

Ru
n�

m
e

(s
)

Number of transac�ons

T10I4DXK

HUI-Miner HUI-Miner_ULB FHM FHM_ULB ULB-Miner

(b) Varied number of transactions

Fig. 10 Scalability of the compared algorithms for different parameter values

Efficient high utility itemset mining using buffered utility-lists

5.5 Scalability evaluation

Lastly, we performed experiments to evaluate the scalabil-
ity of the proposed algorithm on a synthetic dataset named
T10I4NXKDYK, where the number of transactions Y and
the number of items X were varied. The dataset was gen-
erated using the IBM Quest synthetic data generator [2],
where the numbers after T, I, N, and D represent the aver-
age transaction size, average size of maximal potentially
frequent patterns, number of items, and the number of
transactions, respectively. For this experiment, the minutil
threshold was set to 0.05%, the number of items was varied
from 2K to 10K, and the number of transactions was var-
ied from 100K to 500K. Results are shown in Fig. 10a and
b, respectively. As it can be observed in these figures, the
proposed algorithm has almost constant scalability when the
number of items increases, and it has linear scalability when
the number of transactions increases.

6 Conclusion

In recent years, utility-list-based algorithms for discover-
ing high utility itemsets have become widely used because
of their efficiency and simplicity to implement. However,
it can be observed that the amount of memory required
by utility-lists can be quite large. To address this issue,
this paper has presented a novel structure named utility-list
buffer for reusing the memory for storing utility-lists. We
have proposed an algorithm for high utility itemset mining
named ULB-Miner. This algorithm integrates the utility-list
buffer structure with an efficient method for constructing
utility-list segments to reduce the time and the memory
usage required for mining high utility itemsets.

We have performed an extensive experimental study
on six real-life datasets to compare the performance of
ULB-Miner with the state-of-the-art algorithms HUI-Miner
and FHM, which both employ traditional utility-lists. Our
results show that the proposed utility-list buffer structure
and its construction method increase the effectiveness of
HUI mining both in terms of execution time and memory
consumption. The peak memory usage was reduced by up
to six times, and execution times was reduced by up to 10
times. In addition to this, the important contribution of this
work is that the proposed utility-list buffer structure can be
adapted to other utility-list-based algorithms for variations
of the HUI mining problem, including closed high util-
ity itemset mining, top-k high utility itemset mining, high
utility itemset mining in uncertain databases, high utility
sequential pattern mining, and on-shelf high utility itemset
mining.

Since data stream has become widespread in many fields
such as sensor network monitoring, trade management, and

medical data analysis, methods for mining patterns in data
stream have attracted a lot of attention in recent years. In
future work, we plan to adapt the proposed utility-list buffer
structure for streams, and investigate other optimization
approaches involving itemset mining for mining patterns in
data streams.

Acknowledgments This research was partly funded by the Nor-
wegian University of Science and Technology (NTNU) through the
MUSED project and partly supported by the Youth 1000 funding of
Prof. Philippe Fournier-Viger. The work of Mrs. Dam was carried
out during the tenure of an ERCIM “Alain Bensoussan” Fellowship
Programme.

References

1. Agrawal R, Srikan R (1994) Fast algorithms for mining associa-
tion rules in large databases. In: Proceedings of 20th interna-
tional conference on very large data bases (VLDB 1994). Morgan
Kaufmann, pp 487–499

2. Agrawal R, Srikant R (1994) Quest synthetic data generator.
Available at. http://www.almaden.ibm.com/cs/quest/syndata.html

3. Ahmed C, Tanbeer S, Jeong BS, Lee YK (2009) Efficient tree
structures for high utility pattern mining in incremental databases.
IEEE Trans Knowl Data Eng 21(12):1708–1721

4. Ahmed CF, Tanbeer SK, Jeong BS, Lee YK (2009) Efficient min-
ing of utility-based web path traversal patterns. In: Proceedings
of the 11th international conference on advanced communication
technology - vol 3, ICACT’09, pp. 2215–2218

5. Chan R, Yang Q, Shen YD (2003) Mining high utility itemsets.
In: Proceedings of the 3rd IEEE international conference on data
mining, pp 19–26

6. Dam TL, Li K, Fournier-Viger P, Duong QH (2016) An efficient
algorithm for mining top-rank-k frequent patterns. Appl Intell
45(1):96–111

7. Dam TL, Li K, Fournier-Viger P, Duong QH (2017) CLS-Miner:
efficient and effective closed high utility itemset mining. Frontiers
of Computer Science, pp 1–27

8. Dam TL, Li K, Fournier-Viger P, Duong QH (2017) An efficient
algorithm for mining top-k on-shelf high utility itemsets. Knowl
Inf Syst 52(3):621–655

9. Duong QH, Liao B, Fournier-Viger P, Dam TL (2016) An effi-
cient algorithm for mining the top-k high utility itemsets, using
novel threshold raising and pruning strategies. Knowl-Based Syst
104:106–122

10. Fournier-Viger P, Gomariz A, Gueniche T, Soltani A, Wu CW,
Tseng V (2014) SPMF: A java open-source pattern mining library.
J Mach Learn Res 15:3569–3573

11. Fournier-Viger P, Lin JC, Duong Q, Dam T (2016) FHM+: Faster
high-utility itemset mining using length upper-bound reduction.
In: Proceedings of the 29th international conference on industrial
engineering and other applications of applied intelligent systems,
pp 115–127

12. Fournier-Viger P, Lin JCW, Duong QH, Dam TL (2016) PHM:
Mining periodic high-utility itemsets. In: Proceedings of the 16th
industrial conference on data mining. Springer, pp 64–79

13. Fournier-Viger P, Wu CW, Zida S, Tseng V (2014) FHM: Faster
high-utility itemset mining using estimated utility co-occurrence
pruning. In: Proceedings of the 21st international symposium on
methodologies for intelligent systems, pp 83–92

14. Fournier-Viger P, Zida S (2015) FOSHU: Faster on-shelf high
utility itemset mining – with or without negative unit profit. In:

http://www.almaden.ibm.com/cs/quest/syndata.html

Q.-H. Duong et al.

Proceedings of the 30th annual ACM symposium on applied
computing, SAC ’15, pp 857–864

15. Grahne G, Zhu J (2005) Fast algorithms for frequent itemset min-
ing using fp-trees. IEEE Trans Knowl Data Eng 17(10):1347–
1362

16. Han J, Wang J, Lu Y, Tzvetkov P (2002) Mining top-k frequent
closed patterns without minimum support. In: Proceedings of the
IEEE international conference on data mining, pp 211–218

17. Han JW, Pei J, Yin YW (2004) Mining frequent patterns without
candidate generation: A frequent-pattern tree approach. Data Min
Knowl Disc 8(1):53–87

18. Joshi M, Bhalodia D (2016) Mining high utility itemset using
graphics processor. In: Proceedings of the international symposium
on intelligent systems technologies and applications, pp 665–674

19. Krishnamoorthy S (2015) Pruning strategies for mining high
utility itemsets. Expert Syst Appl 42(5):2371–2381

20. Lan GC, Hong TP, Tseng V (2014) An efficient projection-based
indexing approach for mining high utility itemsets. Knowl Inf Syst
38(1):85–107

21. Lee S, Park JS (2016) Top-k high utility itemset mining based on
utility-list structures. In: Proceedings of the international confer-
ence on big data and smart computing, pp 101–108

22. Lin JCW, Gan W, Fournier-Viger P, Hong TP, Tseng V (2016)
Efficient algorithms for mining high-utility itemsets in uncertain
databases. Knowl-Based Syst 96:171–187

23. Liu M, Qu J (2012) Mining high utility itemsets without candidate
generation. In: Proceedings of the 21st ACM international confer-
ence on information and knowledge management, CIKM ’12, pp
55–64

24. Liu Y, Liao WK, Choudhary A (2005) A two-phase algorithm for
fast discovery of high utility itemsets. In: Proceedings of the 9th
pacific-asia conference on advances in knowledge discovery and
data mining, PAKDD’05, pp 689–695

25. Sahoo J, Das AK, Goswami A (2016) An efficient fast algorithm for
discovering closed+ high utility itemsets. Appl Intell 45(1):44–74

26. Song W, Liu Y, Li J (2014) BAHUI: Fast and memory effi-
cient mining of high utility itemsets based on bitmap. Int J Data
Warehouse Min 10(1):1–15

27. Song W, Liu Y, Li J (2014) Mining high utility itemsets by
dynamically pruning the tree structure. Appl Intell 40(1):29–43

28. Song W, Zhang Z, Li J (2016) A high utility itemset mining
algorithm based on subsume index. Knowl Inf Syst 49(1):315–340

29. Thilagu M, Nadarajan R (2012) Efficiently mining of effec-
tive web traversal patterns with average utility. Procedia Technol
6:444–451

30. Tseng V, Shie BE, Wu CW, Yu P (2013) Efficient algorithms for
mining high utility itemsets from transactional databases. IEEE
Trans Knowl Data Eng 25(8):1772–1786

31. Tseng V, Wu CW, Fournier-Viger P, Yu P (2016) Efficient algo-
rithms for mining top-k high utility itemsets. IEEE Trans Knowl
Data Eng 28(1):54–67

32. Wang JZ, Huang JL, Chen YC (2016) On efficiently mining high
utility sequential patterns. Knowl Inf Syst 49(2):597–627

33. Wu CW, Fournier-Viger P, Gu JY, Tseng V (2015) Mining
closed+ high utility itemsets without candidate generation. In:
2015 conference on technologies and applications of artificial
intelligence (TAAI), pp 187–194

34. Wu CW, Shie BE, Tseng V, Yu PS (2012) Mining top-k high
utility itemsets. In: Proceedings of the 18th ACM SIGKDD inter-
national conference on knowledge discovery and data mining,
KDD ’12, pp 78–86

35. Liu Y-C, Cheng C-P, Tseng V (2013)Mining differential top-k co-
expression patterns from time course comparative gene expression
datasets. BMC Bioinformatics 14:230

36. Yun U, Ryang H, Lee G, Fujita H (2017) An efficient algorithm
for mining high utility patterns from incremental databases with
one database scan. Knowl-Based Syst 124:188–206

37. Yun U, Ryang H, Ryu KH (2014) High utility itemset mining
with techniques for reducing overestimated utilities and pruning
candidates. Expert Syst Appl 41(8):3861–3878

38. Zaki MJ, Gouda K (2003) Fast vertical mining using diffsets. In:
Proceedings of the 9th ACM SIGKDD international conference on
knowledge discovery and data mining, pp 326–335

Quang-Huy Duong received
the B.S. degree in Computer
Science from Hanoi Univer-
sity of Science and Technol-
ogy, Vietnam, in 2004. He
received the M.S. degree in
Computer Science at Col-
lege of Computer Science
and Electronic Engineering,
Hunan University, China. He
is currently working toward
the Ph.D. degree in Computer
Science at the Department
of Computer and Information
Science, Norwegian Univer-
sity of Science and Technol-

ogy, Norway. His research interests are optimization, data mining,
machine learning and artificial intelligence.

Dr. Philippe Fournier-Viger
is a professor at the Harbin
Institute of Technology Shen-
zhen Grad. School, China. He
received a Ph.D. in Computer
Science from the University
of Quebec in Montreal (2010).
He has received the title of
“Youth 1000 talent” from the
National Science Foundation
of China. He has published
more than 150 research papers
in refereed international con-
ferences and journals, which
have received more than 1,500
citations. His research inter-

ests include data mining, pattern mining, sequence analysis and predic-
tion, text mining, e-learning, and social network mining. He is also the
founder of the popular SPMF opensource data mining library, which
has been cited in more than 430 research papers since 2010. He is
editor-in-chief of the Data Mining and Pattern Recognition journal.

Efficient high utility itemset mining using buffered utility-lists

Dr. Heri Ramampiaro is an
Associate Professor at the
Department of Computer Sci-
ence, NTNU. He is head of
the Data and Artificial Intelli-
gence (DART) group, Deputy
Head of Department, NTNUs
Scientific Coordinator of the
Telenor–NTNU AI-Lab and
coordinator for IE Faculty’s
Strategic Research Area on
Big Bata. Ramampiaro is
member of the management
committee for the Euro-
pean Network on Integrating
Vision and Language and

substitute member of the management committee for the Semantic
keyword-based search on structured data sources EU COST actions.
Ramampiaro’s main research interests include information retrieval,
information extraction, data/text mining and recommender systems.

Dr. Kjetil Nørvåg received
the Doctor degree in Com-
puter Science from the Nor-
wegian University of Science
and Technology in 2000. He
is a professor at the Depart-
ment of Computer and Infor-
mation Science at the Nor-
wegian University of Science
and Technology. He has been
a visiting researcher at INRIA
in Paris, Athens University
of Economics and Business,
and Aalborg University. He
has published more than 150
papers in international refer-

eed conferences and peer reviewed journals. His major research inter-
ests include database systems, information retrieval, and text mining.
He is a member of the IEEE.

Dr. Thu-Lan Dam received
the B.S. and M.S degree in
Computer Science from Hanoi
University of Science and
Technology, Vietnam, in 2004
and 2009. She received the
Doctor degree in Computer
Science from the Hunan Uni-
versity, China in 2017. She
is a lecturer at the Faculty
of Information Technology,
Hanoi University of Industry,
Vietnam. Currently, she is a
postdoctoral researcher under
the ERCIM “Alain Bensous-
san” fellowship at the NTNU.

Her research interests are optimization, operational research, data
mining and knowledge discovery.

	Efficient high utility itemset mining using buffered utility-lists
	Abstract
	Introduction
	Related work
	Preliminaries and problem definition
	The proposed utility-list buffer method
	The utility-list buffer structure
	An efficient utility-list segment construction method
	High utility itemset mining using the Utility-list buffer structure
	Implementation optimizations
	An illustrative example

	Performance study
	Experimental setup
	Running time
	Memory consumption
	Comparison on the number of utility-lists
	Scalability evaluation

	Conclusion
	Acknowledgments
	References

