
Compact Prediction Tree: A Lossless Model for
Accurate Sequence Prediction

Ted Gueniche1, Philippe Fournier-Viger1, and Vincent S. Tseng2

1 Dept. of Computer Science, University of Moncton, Canada
2 Dept. of Computer Science and Inf. Eng., National Cheng Kung University, Taiwan
{etg8697, philippe.fournier-viger}@umoncton.ca, tsengsm@mail.ncku.edu.tw

Abstract. Predicting the next item of a sequence over a finite alphabet
has important applications in many domains. In this paper, we present a
novel prediction model named CPT (Compact Prediction T ree) which
losslessly compress the training data so that all relevant information is
available for each prediction. Our approach is incremental, offers a low
time complexity for its training phase and is easily adaptable for differ-
ent applications and contexts. We compared the performance of CPT
with state of the art techniques, namely PPM (Prediction by Partial
M atching), DG (Dependency Graph) and All-K-th-Order Markov. Re-
sults show that CPT yield higher accuracy on most datasets (up to 12%
more than the second best approach), has better training time than DG
and PPM, and is considerably smaller than All-K-th-Order Markov.

Keywords: sequence prediction, next item prediction, accuracy, com-
pression

1 Introduction

Given a set of training sequences, the problem of sequence prediction consists
in finding the next element of a target sequence by only observing its previous
items. The number of applications associated with this problem is extensive.
It includes applications such as web page prefetching [3, 5], consumer product
recommendation, weather forecasting and stock market prediction.

The literature on this subject is extensive and there are many different ap-
proaches[6]. Two of the most popular are PPM (Prediction by Partial Matching)[2]
and DG (Dependency Graph) [5]. Over the years, these models have been greatly
improved in terms of time or memory efficiency [3, 12] but their performance re-
main more or less the same in terms of prediction accuracy. Markov Chains are
also widely used for sequence prediction. However, they assume that sequences
are Markovian. Other approaches exist such as neural networks and association
rules [9]. But all these approaches build prediction lossy models from training
sequences. Therefore, they do not use all the information available in training
sequences for making predictions.

In this paper, we propose a novel approach for sequence prediction that use
the whole information from training sequences to perform predictions. The hy-
pothesis is that it would increase prediction accuracy. There are however several

2 Gueniche, T. Fournier-Viger, P., V.S. Tseng

important challenges to build such an approach. First, it requires a structure
for storing the whole information efficiently in terms of storage space. Second,
the structure should be efficiently updatable if new sequences are added. Third,
it is necessary to define an algorithm for performing predictions using the data
structure that is time efficient and generate accurate predictions.

We address all these challenges. First, we propose an efficient trie-based data
structure named CPT (C ompact Prediction T ree) which losslessly compress all
training sequences. The construction process of the CPT structure is incremen-
tal, offers a low time complexity and is reversible (i.e. it is possible to restore the
original dataset from a CPT). Second, we propose an efficient algorithm to per-
form sequence predictions using the CPT structure. Thanks to CPT’s indexing
mechanism, the algorithm can quickly collect relevant information for making
a prediction. Third, we introduce two strategies that respectively reduce the
size of CPT and increase prediction accuracy. Lastly, we perform an extensive
experimental study to compare the performance of our approach with state of
the art sequence prediction algorithms, namely PPM [2](Prediction by Partial
M atching), DG [5] (Dependency Graph) and All-Kth-Order Markov [8], on sev-
eral real-life datasets. Results show that CPT yield superior accuracy in most
cases.

This paper is organized as follows. In section 2, we formally present the
prediction problem and discuss related work. In section 3, we present CPT,
explain how its substructures are built and how it is used to perform predictions.
In section 4, we describe an experimental study. Finally, in section 5, we present
our conclusions.

2 Preliminaries and Related work

Problem definition. Given a finite alphabet I = {i1, i2, ..., im}, an individual
sequence is defined as S = 〈s1, s2, ..., sn〉, a list of ordered items where si ∈ I
(1 ≤ i ≤ m). Let T = {s1, s2, ..., st} be a set of training sequences used to build a
prediction model M . The problem of sequence prediction consists in predicting
the next item sn+1 of a given sequence 〈s1, s2, ..., sn〉 by using the prediction
model M .

Related work. Prediction by Partial Matching [2] (PPM) makes predictions
based on the last K items of a sequence, where K defines the order of the model.
A PPM model can be represented as a graph where prefix subsequences are linked
to suffix subsequences by outgoing arcs having transition probabilities. In a K-
Order PPM, the suffix of a given sequence is predicted by matching its last k
items with one of the node. This approach has been proven to yield good results
in certain areas [2, 3]. However, an important drawback is its rigidness toward
patterns that it can learn. The smallest variation in a subsequence will affect
the prediction outcome, and thus prediction accuracy. This problem become
worse for noisy datasets. In a K-Order PPM model only the Kth-order Markov
predictor is used. In the All-K-Order Markov Model [8], all Markov predictors
from 1 to K inclusively are used. This has the advantage of yielding higher

A Lossless Model for Accurate Sequence Prediction 3

accuracy in most case [3]. But it suffers from a much higher state and space
complexity. A lot of research has been done to improve the speed and memory
requirement of these approaches, for example by pruning states [3, 12, 6].

The Dependency Graph (DG) [5] model is a graph where each node represents
an item i ∈ I. A directionnal arc connects a node A to a node B if and only if B
appears within x items from A in training sequences, where x is the lookahead
window length. The weight of the arc is P (B|A)/P (A).

There are many other approaches to sequence prediction such as using se-
quential rules [4], neural networks and Context Tree Weighting [10] (see [9] for
an overview). However, all these approaches build lossy models, which may thus
ignore relevant information from training sequences when making predictions. In
this work, we propose a lossless prediction model. Our hypothesis is that using
all the relevant information from training sequences to make predictions would
increase prediction accuracy.

3 The Compact Prediction Tree

In this section, we present our approach. It consists of two phases: training and
prediction.

3.1 Training

In the training phase, our prediction model named the Compact Prediction Tree
is built. It is composed of three data structures: (1) a Prediction T ree (PT),
(2) an I nverted I ndex (II) and (3) a Lookup Table (LT). The training is done
using a training dataset composed of a set of sequences. Sequences are inserted
one at a time in the PT and the II. For example, Figure 1 show the PT, II and
LT constructed from sequences 〈A, B,C〉, 〈A, B〉, 〈A, B,D〉, 〈B, C〉, 〈B, D,E〉.

The Prediction Tree is recursively defined as a node. A node contains an item,
a list of children nodes and a pointer to its parent node. A sequence is represented
within the tree as a full branch or a partial branch; starting from a direct child
of the root node. The prediction tree is constructed as follows: given a training
sequence, we check if the current node (the root) has a direct child matching
the first item of this sequence. If it does not, a new child is inserted to the root
node with this item’s value. Then, the cursor is moved to the newly created
child and this process is repeated for the next item in the training sequence. The
construction of this tree for N training sequences takes O(N) in time and is done
by reading the sequences one by one with a single pass over the data. The space
complexity of the PT is in the worst case O(N ∗ averageLengthOfSequences)
but in the average case the PT is more compact because the branches often
overlap by sharing nodes. Two sequences share their first v nodes in the PT if
they share a prefix of v items. The PT is incrementally updatable and is fast to
construct.

The second structure is the Inverted Index. It is designed to quickly find in
which sequences a given item appears. Hence, it can also be used to find all the

4 Gueniche, T. Fournier-Viger, P., V.S. Tseng

sequences containing a set of items. The II is defined as a hash table containing
a key for each unique item encountered during the training. Each key leads to
a bitset that indicates IDs of the sequences where the item appears. A bitset
contains n bits, where n is the number of training sequences. The presence of an
item in the s-th sequence is indicated by setting the s-th bit to 1 in its bitset,
and 0 otherwise. The II, just like the PT, has an average construction time of
O(n) and takes ((n + b) ∗ u) bytes where n is the number of training sequences,
u is the number of unique items and b is the size of an item in bytes.

The third and last structure is the Lookup Table. It links the II to the PT.
For each sequence ID, the LT points to the last node of the sequence in the PT.
The LT purpose is to provide an efficient way to retrieve sequences from the
PT using their sequence IDs. The LT is updated after each sequence insertion
in the PT. Its time complexity is O(n) where n is the number of sequences. In
terms of size, this data structure takes n ∗ (b + p) bytes where n is the number
of sequences, b is the size of an item in bytes and p is the size of a pointer in
bytes. The addition of the LT to the PT makes it a lossless representation of the
training set of sequences, i.e. it allows restoring the original dataset.

Fig. 1. A Prediction Tree (PT), Inverted Index (II) and Lookup Table (LT)

The training process is really fast (O(n)). The CPT take more or less space
depending on the dataset. If many sequences share common prefixes, a greater
compression is achieved. Note that the PTitself could be further compressed by
replacing frequent subsequences by single nodes or pruning infrequent nodes.
These optimizations are outside the scope of this paper and will be investigated
in future work.

3.2 Prediction

In the prediction phase, our prediction model is used to perform predictions.
Let x be an integer named the prefix length. Making a prediction for a given

A Lossless Model for Accurate Sequence Prediction 5

sequence S is done by finding all sequences that contains the last x items from S
in any order and in any position. We call these sequences the sequences similar
to S and they are used to predict the next item of S. The process of finding
the sequences similar to S is implemented efficiently by using the II. It is done
by performing the intersection of the bitsets of the last x items from S. The
resulting bitset indicates the set of sequences similar to S. Using the LT, it is
trivial to access these sequences in the PT. For each similar sequence Y , the
algorithm capture its consequent w.r.t S. The consequent of a sequence Y with
respect to a sequence S is the subsequence of Y starting after the last item in
common with S until the end of Y . Each item of each of those consequents
are then stored in a structure named Count Table (CT). A CT is defined as a
hash table with items as keys and a score as associated value. This structure
holds a list of possible candidate items and their respective score for a specific
prediction and hence is unique for each individual prediction task. The item
with the highest score within the CT is the predicted item. The primary scoring
measure is the support. But in the case where the support of two items is equal,
the confidence is used. We define the support of an item si as the number of
times si appears in sequences similar to S, where S is the sequence to predict.
The confidence of an item si is defined as the support of si divided by the total
number of training sequences that contain si (the cardinality of the bitset of
si in the II). We picked the support as our main scoring measure because it
outperformed other measures in terms of accuracy in our experiments.

Performing a prediction is fairly fast. The time complexity is calculated as
follows. The search for similar sequences is performed by bitset intersections
(the bitwise AND operation), which is O(1). The construction of the CT is
O(n) where n is the number of items in all consequents. Finally, choosing the
best scoring item is done in O(m) where m is the number of unique items in
all consequents. In terms of spatial complexity, the CT is the only constructed
structure in the prediction process and its hashtable only has m keys.

3.3 Optimizations

Sequence Splitter. The first optimization is done during the training phase
while the PT is being constructed. Let splitLength be the maximum allowed
length for a sequence. For each sequence longer than splitLength items, only
the subsequence formed by its last splitLength items are inserted in the PT. By
using this optimization, the resulting CPT is no longer lossless since sequence
information is discarded. Splitting long sequences has for goal to reduce the PT
size by reducing the number of possible branches and by enforcing an upper
bound on the depth of branches. Intuitively, it may seems that this optimization
would negatively affect the prediction’s accuracy. But we have observed that it
boosts the accuracy by forcing prediction to focus on the latest W items of each
training sequence. We also observed that this optimization greatly reduces the
prediction time and the CPT size (cf. section 4.3).

Recursive Divider. One of the problem we experienced early in our re-
search is the low coverage of our approach for prediction. Since our model is

6 Gueniche, T. Fournier-Viger, P., V.S. Tseng

based on finding similar sequences that share a fixed subset of items T , if some
noise is introduced in T , CPT is only able to find similar sequences contain-
ing the same noise. To make our approach more flexible, we introduce a recur-
sive method named the Recursive Divider that tries removing the noise from T
when searching for similar sequences. This approach works by levels k = 1, 2...
maxLevel, where maxLevel is a constant indicating the maximum number of lev-
els to explore. At level k, for each subset Q ⊂ T such that |Q| = k, the Recursive
Divider uses the similar sequences to T/Q to update the CT. Note that each
training sequence is only used once for each level to update the CT. If a pre-
diction cannot be made at level k, the Recursive Divider moves to level k + 1 if
k + 1 < maxLevel. In the experimentation section, we show that this technique
boosts the coverage of CPT.

4 Experimental evaluation

To evaluate the performance of the proposed prediction model, we performed a
set of experiments. Our test environment is made of an Intel i5 third generation
processor with 4.5 GB of available RAM on a 64-bit version of Windows8.

4.1 Datasets

We used five real-life datasets representing various types of data. Table 1 sum-
marizes their characteristics. For each dataset, sequences containing less than 3
items were discarded .

BMS is a popular dataset in the field of association rule mining made avail-
able for KDD CUP 2000 [11]. It contains web sessions from an e-commerce
website, encoded as sequences of integers, representing web pages.

FIFA contains web sessions recorded on the 1998 FIFA World Cup Web site
and holds 1,352,804,07 web page requests [1]. Originally, the dataset is a set of
individual requests containing metadata (e.g. client id and time). We converted
requests into sequences by grouping requests by users and splitting a sequence if
there was a delay of more than an hour between two requests. Our final dataset
is a random sample from the original dataset.

SIGN is a dense dataset with long sequences, containing 730 sequences of
sign-language utterances transcripted from videos [7].

KOSARAK is a dataset containing web sessions from a Hungarian news
portal available at http://fimi.ua.ac.be/data. It is the largest dataset used
in our experimental evaluation.

BIBLE is the religious Christian set of books used in plain text as a flow
of sentences. The prediction task consists in predicting the next character in a
given sequence of characters. The book is split in sentences where each sentence
is a sequence. This dataset is interesting since it has a small alphabet with only
75 distinct characters and it is based on natural language.

A Lossless Model for Accurate Sequence Prediction 7

Table 1. Dataset characteristics

Dataset
Sequence

count
Unique
items

Avg sequence
length

Avg item occurence
count per sequence

BMS 15,806 495 6.01 1.00

FIFA 28,978 3,301 32.11 1.04

SIGN 730 267 93.00 1.79

KOSARAK 638,811 39,998 11.64 1.00

BIBLE 32,529 76 130.96 4.78

4.2 Evaluation Framework

We designed a framework to compare our approach with state-of-the-art ap-
proaches on all these datasets. The framework is publicly available at http:
//goo.gl/hDtdt and is developed in Java. The following paragraphs describes
the evaluation process of our framework.

Fig. 2. Sequence splitting (context, prefix, suffix)

Each dataset is read in memory. Sequences containing less than three items
are discarded. The dataset is then split into a training set and a testing set, using
the 10-fold cross-validation technique. For each fold, the training set is used to
train each predictor. Once the predictors have been trained, each sequence of
the testing set is split into three parts; the context, the prefix and the suffix as
shown in Fig. 2. The prefix and suffix size are determined by two parameters
named PrefixSize (p) and SuffixSize (s). The context (c) is the remaining part of
the sequence and is discarded. For each test sequence, each predictor accepts the
prefix as input and makes a prediction. A prediction has three possible outcomes.
The prediction is a success if the generated candidate appears in the suffix of the
test sequence. The prediction is a no match if the predictor is unable to perform
a prediction. Otherwise it is a failure. We define three measures to assess a
predictor overall performance. Local Accuracy (eq. 1) is the ratio of successful
predictions against the number of failed predictions.

Local Accuracy = |successes|/(|successes|+ |failures|) (1)

Coverage (eq. 2) is the ratio of sequence without prediction against the total
number of test sequences.

Coverage = |no matches|/|sequences| (2)

8 Gueniche, T. Fournier-Viger, P., V.S. Tseng

Accuracy (eq. 3) is our main measure to evaluates the accuracy of a given pre-
dictor. It is the number of successful prediction against the total number of test
sequences.

Accuracy = |successes|/|sequences| (3)

The above measures are used in our experiments as well as the spatial size
(in nodes), the training time (in seconds) and the testing time (in seconds). The
spatial size is calculated in nodes because the spatial complexity of all predictors
can be represented in terms of nodes. This measure is meant to show the spatial
complexity and is not used to determine the exact size of a model.

4.3 Experiments

Overall performance. The goal of the first experiment consists in getting an
overview of the performances (accuracy, training and testing time and space)
of CPT against DG, 1st order PPM and All-Kth-Order Markov (AKOM). DG
and AKOM were respectively tuned with a lookahead window of 4 and with
an order of 5, since these values gave the best performance and are typically
good values for these algorithms [3, 5, 8]. Results are shown in Tables 2 and 3.
Results show that CPT yield a higher accuracy for all but one dataset. DG and
PPM perform well in some situations but CPT is more consistent across all
datasets. The training time, just like the testing time can be critical for some
applications. In this experiment, CPT is always faster to train than DG and
All-Kth-Order Markov by at least a factor of 3, and has comparable training
time to PPM. The downside of CPT is that making a prediction can take longer
than other methods. This characteristic is a trade off for the higher accuracy and
is mainly caused by the Recursive Divider optimization described in section 3.3.
The coverage is not presented because a high coverage (> 95%) is achieved by
all the predictor for all datasets and it is also indirectly included in the overall
accuracy measure.

Table 2. Comparison of accuracy and model size

Dataset Overall Accuracy Size (nodes)

DG CPT PPM AKOM DG CPT PPM AKOM

BMS 36.07 38.45 31.12 30.81 484 30920 484 67378

FIFA 25.87 37.2 24.44 27.98 3027 167935 3027 1397238

SIGN 3.54 34.795 4.11 10.14 262 4477 262 180396

KOSARAK 31.44 34.26 25.3 21.34 16646 234301 16646 1146462

BIBLE 6.26 82.06 29.06 82.48 75 11070 75 79456

Scalability. Our second experiment compares the scalability of each ap-
proach. The importance of scalability is application specific. But it is an impor-
tant factor for most prediction tasks since the ability to scale of a prediction

A Lossless Model for Accurate Sequence Prediction 9

Table 3. Comparison of training time and testing time

Dataset Training time (s) Testing time (s)

DG CPT PPM AKOM DG CPT PPM AKOM

BMS 0.076 0.018 0.01 0.356 0.004 0.352 0.001 0.004

FIFA 3.032 0.153 0.095 12.347 0.301 0.146 0.006 0.085

SIGN 0.172 0.008 0.009 0.455 0.002 0.134 0.001 0.002

KOSARAK 9.697 0.741 0.173 6.051 0.042 1.533 0.018 0.011

BIBLE 0.803 0.007 0.244 4.031 0.018 0.029 0.043 0.002

model can directly or indirectly limit its accuracy and coverage. For this exper-
iment, we used the FIFA dataset because of its high number of sequences and
unique items. The experiment is conducted in steps, where the predictors are
trained and tested with a higher number of sequences at each following step.
Figure 3 shows the results in terms of accuracy, space and time. All training
times in this experiment follow a linear evolution, but CPT and PPM operate
at a much lower scale and are very close. PPM and DG have low spatial com-
plexity because of their compact representation compared to CPT which takes
more place but still grows linearly.

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

1
2

0
0

0

1
4

0
0

0

1
6

0
0

0

1
8

0
0

0

2
0

0
0

0
 20

25

30

35

40

45

sequence number

a
cc

u
ra

cy
 (

%
)

accuracy

DG

CPT

PPM

AllKMarkov

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

1
2

0
0

0

1
4

0
0

0

1
6

0
0

0

1
8

0
0

0

2
1

0
0

0
 1k

10k

100k

1 000k

10 000k

sequence number

si
ze

 (
in

 n
o

d
es

)

size

0,001

0,01

0,1

1

sequence number

te
st

in
g

 t
im

e
(s

)

testing time

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

1
2

0
0

0

1
4

0
0

0

1
6

0
0

0

1
8

0
0

0

2
1

0
0

0
 0,01

0,1

1

10

sequence number

tr
a

in
in

g
 t

im
e

(s
)

training time

Fig. 3. Comparion of scalability

Prefix length. The third experiment assesses the effect of the prefix size on
the accuracy and coverage. Results are shown in Figure 4 for the FIFA dataset.
Recall that the predictors output a prediction based on the prefix given as input.

10 Gueniche, T. Fournier-Viger, P., V.S. Tseng

The longer the prefix, the more contextual information is given to the predictor.
Note that DG, PPM and All-Kth-Order Markov use a predetermined portion
of the prefix defined by the order of each algorithm. Thus, by increasing the
prefix length, we can observe that none of these algorithms get an increase in
any performance measures. CPT takes advantage of a longer prefix by finding
more precise (longer) patterns in its prediction tree, to yield a higher accuracy.
The accuracy of CPT gets higher as the prefix length is raised. But after the
prefix reaches a length of 8 (specific to the dataset), the accuracy decreases.
This is because the algorithm may not be able to match a given prefix to any
branches in the prediction tree. It means that this parameter should be finely
tuned for each dataset to maximize the accuracy. The figure on the right of Fig.
4 shows the influence of the prefix length on the CPT spatial complexity.

Accuracy

Prefix

2

3

4

5

6

7

8

9

10

11

Size

Prefix

2

3

4

5

6

7

8

9

10

11

2 3 4 5 6 7 8 9 10 11

20

25

30

35

40

45

prefix length

a
cc

u
ra

cy
 (

%
)

accuracy

CPT

DG

PPM

AllKMarkov

2 3 4 5 6 7 8 9 10 11

40k

50k

60k

70k

80k

90k

100k

prefix length

si
ze

(i
n

 n
o

d
es

)

size

Fig. 4. Influence of prefix length on accuracy and model size

Optimizations. The fourth experiment assesses the influence of the Recur-
sive Divider optimization (cf. Section 3.3) for CPT. The Recursive Divider aims
at boosting the coverage of predictions using the CPT by ignoring items that
could be noise during the prediction process. But it also indirectly influence ac-
curacy. Figure 5 shows the effect of the Recursive Divider on the FIFA dataset
by sequentially incrementing the maxLevel parameter. We can observe that the
accuracy and the coverage of CPT are getting higher as the maxLevel parameter
is raised. Also, the coverage and the accuracy measures quickly stabilize without
affecting the testing time. This strategy’s parameter can therefore be set to a
really high value to guarantee the best coverage and accuracy and it does not
need to be adjusted for each dataset.

The fifth experiment measures the influence of the Sequence Splitter opti-
mization (cf. Section 3.3). It truncates long sequences before they are inserted
in the prediction tree during the training phase. This makes the prediction tree
more compact by reducing the number of possible branches and their depth. Re-
ducing the depth improves the time complexity for both the training and testing
processes. In this experiment we used the FIFA dataset because it has long se-
quences. We evaluated the performance of our model against different values for
the splitLength parameter. For low values (eg. 5) most of the training sequences
are split. By setting splitLength to a high value (eg. 40 or more), only a small
number of sequences are splitted. In Figure 6, we show the effect of applying the

A Lossless Model for Accurate Sequence Prediction 11
Sheet3

no match

Rec. Max

2

3

4

5

6

7

8

Testing

Rec. Max

2

3

4

5

6

7

8

2 3 4 5 6 7 8

24

28

32

36

40

maxLevel

a
cc

u
ra

cy
 (

%
)

accuracy

2 3 4 5 6 7 8

50

60

70

80

90

100

maxLevel

co
v

er
a

g
e

(%
)

coverage

2 3 4 5 6 7 8

0

0,1

0,2

0,3

maxLevel

tr
a

in
in

g
 t

im
e

(s
)

Training Time

2 3 4 5 6 7 8

0

0,1

0,2

0,3

maxLevel

te
st

in
g

 t
im

e
(s

)
Testing Time

Page 1

Fig. 5. Influence of the Recursive Divider optimization

Sequence Splitter strategy on the accuracy, the spatial size and the testing time,
for various split lengths. By setting splitLength to a low value (left side of each
chart of Fig. 6), the spatial size is reduced by a factor of 7 while having a really
low training and testing time and still having a high accuracy. Once again, this
parameter should be finely tuned for each dataset if one wants to achieve the
best performances.

Sheet3

5 10 15 20 25 30 35 40

0

10

20

30

40

splitLenth

a
cc

u
ra

cy
 (

%
)

accuracy

5 10 15 20 25 30 35 40

0k

50k

100k

150k

200k

250k

splitLength

si
ze

 (
in

 n
o

d
es

)

size

5 10 15 20 25 30 35 40

0

0,1

0,2

0,3

splitLenth

tr
a

in
in

g
 t

im
e

(s
)

training Time

5 10 15 20 25 30 35 40

0

0,5

1

1,5

2

2,5

splitLenth

te
st

in
g

 t
im

e
(s

)

testing Time

Page 1

Fig. 6. Influence of the Sequence Splitter optimization

5 Conclusion

Predicting the next item of a sequence over a finite alphabet is essential to a
wide range of applications in many domains. In this paper we presented a novel
prediction model named the Compact Prediction Tree for sequence prediction.
CPT is lossless (it can use all the information from training sequences to make

12 Gueniche, T. Fournier-Viger, P., V.S. Tseng

a prediction), is built ly with a low time complexity. We also presented two op-
timizations (Recursive Divider and Sequence Splitter), which respectively boost
the coverage of CPT and reduce its size.

We compared CPT to state-of-the-art approaches, namely PPM, All-Kth-
Order Markov Model and DG on six real-life datasets. The source code of al-
gorithms and datasets used in the experiments are available at http://goo.
gl/hDtdt. Results show that CPT achieves the highest accuracy on all but one
dataset with an accuracy up to 12% higher than the second best approach. CPT
also shows better training time than DG and All-Kth Order Markov Model by
at least a factor of 3. CPT is also considerably smaller than the All-Kth Order
Markov model by at least a factor of 2. CPT is easily adaptable for different
applications and contexts as shown in the experiments.

In the future, we aim to further improve the accuracy of CPT and its compres-
sion. We believe that higher compression can be achieved by grouping patterns
of nodes and pruning nodes in the prediction tree. We also plan to compare our
model against other prediction techniques such as Context Tree Weighting and
Neural Networks.

References

1. Arlitt, M., Jin, T.: A workload characterization study of the 1998 world cup web
site. IEEE Network, vol. 14, no. 3, pp. 30-37 (2000)

2. Cleary, J., Witten, I.: Data compression using adaptive coding and partial string
matching. IEEE Trans. on Inform. Theory, vol. 24, no. 4, pp. 413-421 (1984)

3. Deshpande, M., Karypis, G.: Selective Markov models for predicting Web page
accesses, ACM Transactions on Internet Technology, vol. 4 no. 2, pp. 163-184 (2004)

4. Fournier-Viger, P., Gueniche, T., Tseng, V.S.: Using Partially-Ordered Sequential
Rules for Sequence Prediction. In: Proc. 8th Intern. Conf. on Advanced Data Mining
and Applications, Springer LNAI 7713, pp. 431-442 (2012)

5. Padmanabhan, V.N., Mogul, J.C.: Using Prefetching to Improve World Wide Web
Latency, Computer Communications, vol. 16, pp. 358-368 (1998)

6. Domenech, J., de la Ossa, B., Sahuquillo, J., Gil, J. A., Pont, A.: A taxonomy of
web prediction algorithms. In: Expert Systems with Applications, no. 9, (2012)

7. Papapetrou, P., Kollios, G., Sclaroff, S., Gunopulos, D.: Discovering Frequent Ar-
rangements of Temporal Intervals. In: Proc. of the 5th IEEE International Confer-
ence on Data Mining, pp. 354-361 (2005)

8. Pitkow, J., Pirolli, P.: Mining longest repeating subsequence to predict world wide
web surng. In: Proc. 2nd USENIX Symposium on Internet Technologies and Sys-
tems, Boulder, CO, pp. 13-25 (1999)

9. Sun, R., Giles, C. L.: Sequence Learning: From Recognition and Prediction to Se-
quential Decision Making. IEEE Intelligent Systems, vol. 16 no. 4, pp. 67-70 (2001)

10. Willems, F., Shtarkov, Y., Tjalkens, T.: The context-tree weighting method: Basic
properties. IEEE Trans. on Information Theory, vol. 31, no. 3, pp. 653-664 (1995)

11. Zheng, Z., Kohavi, R., Mason, L.: Real world performance of association rule al-
gorithms. In: Proc. 7th ACM intern. conf. on KDD, pp. 401-406 (2001)

12. Pitkow, J., Pirolli, P.: Mining longest Repeating subsequences to Predict World
Wide Web Surfing. In: 2nd USENIX Symp. Internet Techn. and Systems (1999)

