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Abstract. Discovering unexpected and useful patterns in databases is a fundamental
data mining task. In recent years, a trend in data mining has been to design algorithms
for discovering patterns in sequential data. One of the most popular data mining tasks on
sequences is sequential pattern mining. It consists of discovering interesting subsequences
in a set of sequences, where the interestingness of a subsequence can be measured in
terms of various criteria such as its occurrence frequency, length, and profit. Sequential
pattern mining has many real-life applications since data is encoded as sequences in
many fields such as bioinformatics, e-learning, market basket analysis, text analysis, and
webpage click-stream analysis. This paper surveys recent studies on sequential pattern
mining and its applications. The goal is to provide both an introduction to sequential
pattern mining, and a survey of recent advances and research opportunities. The paper
is divided into four main parts. First, the task of sequential pattern mining is defined and
its applications are reviewed. Key concepts and terminology are introduced. Moreover,
main approaches and strategies to solve sequential pattern mining problems are presented.
Limitations of traditional sequential pattern mining approaches are also highlighted, and
popular variations of the task of sequential pattern mining are presented. The paper
also presents research opportunities and the relationship to other popular pattern mining
problems. Lastly, the paper also discusses open-source implementations of sequential
pattern mining algorithms.
Keywords: Sequential pattern mining, Sequences, Frequent pattern mining, Itemset
mining, Data Mining,
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1. Introduction. Data mining consists of extracting information from data stored in databases to un-
derstand the data and/or take decisions. Some of the most fundamental data mining tasks are clustering,
classification, outlier analysis, and pattern mining [6, 58]. Pattern mining consists of discovering interest-
ing, useful, and unexpected patterns in databases. This field of research has emerged in the 1990s with
the seminal paper of Agrawal and Srikant [1]. That paper introduced the Apriori algorithm, designed for
finding frequent itemsets, that is groups of items (symbols) frequently appearing together in a database
of customer transactions. For example, the Apriori algorithm can be used to discover patterns such as
{carrot juice, salad, kiwi} in a retail store database, indicating that these products are frequently bought
together by customers.

The interest in pattern mining techniques comes from their ability to discover patterns that can be
hidden in large databases and that are interpretable by humans, and hence useful for understanding
the data and for decision-making. For example, a pattern {milk, chocolate cookies} can be used to
understand customer behavior and take strategic decisions to increase sales such as co-promoting products
and offering discounts.

Although pattern mining has become very popular due to its applications in many domains, several
pattern mining techniques such as those for frequent itemset mining [1, 53, 116, 86, 106] and association
rule mining [1] are aimed at analyzing data, where the sequential ordering of events is not taken into
account. Thus, if such pattern mining techniques are applied on data with time or sequential ordering
information, this information will be ignored. This may result in the failure to discover important patterns
in the data, or finding patterns that may not be useful because they ignore the sequential relationship
between events or elements. In many domains, the ordering of events or elements is important. For
example, to analyze texts, it is often relevant to consider the order of words in sentences [94]. In network
intrusion detection, the order of events is also important [93].

To address this issue, the task of sequential pattern mining was proposed. It is a prominent solution
for analyzing sequential data [2, 98, 117, 4, 51, 89, 3, 47, 30, 111, 31, 32, 27, 28, 22, 100, 79]. It
consists of discovering interesting subsequences in a set of sequences, where the interestingness of a
subsequence can be measured in terms of various criteria such as its occurrence frequency, length, and
profit. Sequential pattern mining has numerous real-life applications due to the fact that data is naturally
encoded as sequences of symbols in many fields such as bioinformatics [108], e-learning [22], market basket
analysis [98], text analysis [94], energy reduction in smarthomes [104], webpage click-stream analysis [25]
and e-learning [124]. Moreover, sequential pattern mining can also be applied to time series (e.g. stock
data), when discretization is performed as a pre-processing step [66]

Sequential pattern mining is a very active research topic, where hundreds of papers present new
algorithms and applications each year, including numerous extensions of sequential pattern mining for
specific needs. Because of this, it can be difficult for newcomers to this field to get an overview of the
field. To address this issue, a survey has been published in 2010 [79]. However, this survey is no longer
up-to-date as it does not discuss the most recent techniques, advances and challenges in the field. In this
paper, we aim to address this issue by presenting an up-to-date survey of sequential pattern mining that
can serve both as an introduction and as a guide to recent advances and opportunities in the field. The
rest of this paper is organized as follows. The next section describes the problem of sequential pattern
mining, and the main techniques employed in sequential pattern mining. Then, the paper discusses
popular extensions of the problem of sequential pattern mining, and other problems in data mining that
are closely related to sequential pattern mining. Then, the paper discusses research opportunities and
open-source implementations of sequential pattern mining algorithms. Finally, a conclusion is drawn.

2. Sequential Pattern Mining. Two types of sequential data are commonly used in data mining [58]:
time-series and sequences. A time-series is an ordered list of numbers, while a sequence is an ordered
list of nominal values (symbols). For example, Fig. 1 (left) shows a time-series representing amounts of
money, while Fig. 1 (right) depicts a sequence of symbols (letters). Both time-series and sequences are
used in many domains. For instance, time-series are often used to represent data such as stock prices,
temperature readings, and electricity consumption readings, while sequences are used to represent data
such as sentences in texts (sequences of words), sequences of items purchased by customers in retail stores,
and sequences of webpages visited by users.

The problem of sequential pattern mining was proposed by Agrawal and Srikant [98], as the problem
of mining interesting subsequences in a set of sequences. Although, it was originally designed to be
applied to sequences, it can also be applied to time series after converting time-series to sequences using
discretization techniques. For example, Fig. 1 (right) shows a sequence representing the time-series
shown in Fig. 1 (left), where the symbols a, b, c, d are defined as an increase of 10$, a decrease of 10$, an
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increase of 20$, and a decrease of 20$, respectively. There exists several ways of transforming time-series
to sequences. Some of the most popular techniques are the SAX [66] and iSAX [17] algorithms. For more
details about time-series transformations, the reader may refer to a survey of methods for time-series
data mining [23].

A time-series A sequence

a, b , a, b , c, a, b, d 
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Figure 1. A time-series (left) and a sequence (right)

In this paper, we are interested by sequences, as it is the type of data used in sequential pattern mining.
Definitions related to sequences are given next with some illustrative examples. Let there be a set of
items (symbols) I = {i1, i2, . . . im}. An itemset X is a set of items such that X ⊆ I. Let the notation
|X| denote the set cardinality or, in other words, the number of items in an itemset X. An itemset X
is said to be of length k or a k-itemset if it contains k items (|X| = k). For example, consider that the
set of symbols I = {a, b, c, d, e, f, g} represents the products sold in a retail store. The set {a, b, c} is an
itemset containing three items, which may represent the purchases made by a customer on a given day.

Without loss of generality, assume that there exists a total order on items ≺ such as the lexicographical
order (e.g. a ≺ b ≺ c ≺ d ≺ e ≺ f ≺ g). A sequence is an ordered list of itemsets s = 〈I1, I2, ..., In 〉 such
that Ik ⊆ I (1 ≤ k ≤ n). For example, consider the sequence 〈{a, b}, {c}, {f, g}, {g}, {e}〉 representing
five transactions made by a customer at a retail store. Each single letter represents an item. Items
between curly brackets represent an itemset. This sequence indicates that a customer purchased items
a and b at the same time, then bought item c, then purchased items f and g at the same time, then
purchased g, and finally purchased e.

A sequence sa = 〈A1, A2, . . . , An〉 is said to be of length k or a k-sequence if it contains k items, or in
other words if k = |A1| + |A2| + · · · + |An|. For example, the sequence 〈{a, b}, {c}, {f, g}, {g}, {e}〉 is a
7-sequence.

A sequence database SDB is a list of sequences SDB = 〈s1, s2, ..., sp〉 having sequence identifiers
(SIDs) 1, 2...p. For instance, a sequence database is shown in Table 1, which contains four sequences
having the SIDs 1, 2, 3 and 4. These sequences could, for example, represent purchases made by four
customers.

Table 1. A sequence database

SID Sequence
1 〈{a, b}, {c}, {f, g}, {g}, {e}〉
2 〈{a, d}, {c}, {b}, {a, b, e, f}〉
3 〈{a}, {b}, {f}, {e}〉
4 〈{b}, {f, g}〉

A sequence sa = 〈A1, A2, ..., An〉 is said to be contained in another sequence sb = 〈B1, B2, ..., Bm〉 if and
only if there exist integers 1 ≤ i1 < i2 < ... < in ≤ m such that A1 ⊆ Bi1, A2 ⊆ Bi2, ..., An ⊆ Bin (denoted
as sa v sb). For example, the sequence 〈{b}, {f, g}〉 is contained in sequence 〈{a, b}, {c}, {f, g}, {g}, {e}〉,
while the sequence 〈{b}, {g}, {f}〉 is not. If a sequence sa is contained in a sequence sb, sa is said to be
a subsequence of sb.

The goal of sequential pattern mining is to discover interesting subsequences in a sequence database,
that is sequential relationships between items that are interesting for the user. Various measures can be
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Table 2. Sequential patterns found in the database of Table. 1

Pattern Sup. Closed? Maximal? Generator?
〈{a}〉 3 yes no no
〈{a}, {g}〉 2 no no yes
〈{a}, {g}, {e}〉 2 yes yes no
〈{a}, {f}〉 3 yes no no
〈{a}, {f}, {e}〉 2 yes yes no
〈{a}, {c}〉 2 no no yes
〈{a}, {c}, {f}〉 2 yes yes no
〈{a}, {c}, {e}〉 2 yes yes no
〈{a}, {b}〉 2 no no yes
〈{a}, {b}, {f}〉 2 yes yes no
〈{a}, {b}, {e}〉 2 yes yes no
〈{a}, {e}〉 3 yes no yes
〈{a, b}〉 2 yes yes no
〈{b}〉 4 no no yes
〈{b}, {g}〉 3 yes no no
〈{b}, {g}, {e}〉 2 yes yes no
〈{b}, {f}〉 4 yes no no
〈{b}, {f, g}〉 2 yes yes no
〈{b}, {f}, {e}〉 2 yes yes no
〈{b}, {e}〉 3 yes no no
〈{c}〉 2 no no yes
〈{c}, {f}〉 2 no no yes
〈{c}, {e}〉 2 no no yes
〈{e}〉 3 no no yes
〈{f}〉 4 no no yes
〈{f, g}〉 2 no no yes
〈{f}, {e}〉 2 no no yes
〈{g}〉 3 no no yes
〈{g}, {e}〉 2 no no yes

used to assess how interesting a subsequence is. In the original problem of sequential pattern mining,
the support measure is used. The support (or absolute support) of a sequence sa in a sequence database
SDB is defined as the number of sequences that contain sa, and is denoted by sup(sa). In other words,
sup(sa) = |{s|s v sa∧s ∈ SDB}|. For example, the support of the sequence 〈{b}, {f, g}〉 in the database
of Table 1 is 2 because this sequence appears in two sequences (Sequence 1 and Sequence 4). Note that
some papers define the support of a sequence X as a ratio. This definition called the relative support is
relSup(sa) = sup(sa)/|SDB|, that is the number of sequences containing sa divided by the number of
sequences in the database. For example, the relative support of the itemset 〈{b}, {f, g}〉 is 0.5.

Sequential pattern mining is the task of finding all frequent subsequences in a sequence database. A
sequence s is said to be a frequent sequence or a sequential pattern if and only if sup(s) ≥ minsup, for
a threshold minsup set by the user [98]. The assumption is that frequent subsequences are interesting
to the user. For instance, consider the database of Table 1, and assume that the user sets minsup = 2
to find all subsequences appearing in at least two sequences. Table 2 shows the 29 sequential patterns
found in the database for minsup = 2, and their support values. For example, the patterns 〈{a}〉 and
〈{a}, {g}〉 are frequent and have a support of 3 and 2 sequences, respectively.

The task of sequential pattern mining is an enumeration problem. It aims at enumerating all patterns
(subsequences) that have a support no less than the minimum support threshold set by the user. Thus,
there is always a single correct answer to a sequential pattern mining problem. Discovering sequential
patterns is a hard problem. To solve this problem, the naive approach is to calculate the support of all
possible subsequences in a sequence database to then output only those meeting the minimum support
constraint specified by the user. However, such a naive approach is inefficient because the number of
subsequences can be very large. A sequence containing q items in a sequence database can have up
to 2q − 1 distinct subsequences. Because of this, applying the naive approach to solve the sequential
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pattern mining problem is unrealistic for most real-life sequence databases. Hence, it is necessary to
design efficient algorithms to avoid exploring the search space of all possible subsequences.

Numerous algorithms have been designed to discover sequential patterns in sequence databases. Some
of the most popular are GSP [98], Spade [117], PrefixSpan [89], Spam [3], Lapin [111], CM-Spam [30], and
CM-Spade [30]. All these sequential pattern mining algorithms take as input a sequence database and a
minimum support threshold (chosen by the user), and output the set of frequent sequential patterns. It is
important to note that there is always only one correct answer to a sequential pattern mining task (for a
given sequence database and threshold value). Thus, all sequential pattern mining algorithms return the
same set of sequential patterns if they are run with the same parameter on the same database. Hence,
the difference between the various algorithms is not their output, but it is how each algorithm discovers
the sequential patterns. Various algorithms utilize different strategies and data structures to search for
sequential patterns efficiently. As a result, some algorithms are more efficient than others.

In the following pages, we give an overview of the main techniques employed by sequential pattern
mining algorithms, and discusses their advantages and limitations. The following section then discusses
variations of the sequential pattern mining problem.

Before introducing the specific techniques, it is important to present a few key definitions related to
the search for sequential patterns. In general, sequential pattern mining algorithms assume that there
exists a total order on items denoted as �, which represent the order for processing items in a database to
find the sequential patterns. For example, consider a database containing the items {a, b, c}. The order
for processing items could be defined as the lexicographical order (e.g. c � b � a). But any other total
order on items from I such as the order of decreasing or increasing support could be used. Note that
the choice of the order � has no influence on the final result produced by a sequential pattern mining
algorithm. The order � is used so that algorithms follow a specific order to explore potential sequential
patterns, and thus avoid considering the same pattern more than once.

All sequential pattern mining algorithms explore the search space of sequential patterns by performing
two basic operations called s-extensions and i-extensions. These operations are used to generate a
(k + 1)-sequence (a sequence containing k + 1 items) from a k-sequence. These operations are defined
as follows. A sequence sa = 〈A1, A2, ..., An〉 is a prefix of a sequence sb = 〈B1, B2, ..., Bm〉, if n < m,
A1 = B1, A2 = B2, ..., An−1 = Bn−1 and An is equal to the first |An| items of Bn according to the
� order. For example, the sequence 〈{a}〉 is a prefix of the sequence 〈{a, b}, {c}〉, and the sequence
〈{a}{c}〉 is a prefix of the sequence 〈{a}, {c, d}〉 A sequence sb is said to be an s-extension of a sequence
sa = 〈I1, I2, ...Ih〉 with an item x, if sb = 〈I1, I2, ...Ih, {x}〉, i.e. sa is a prefix of sb and the item x appears
in an itemset occuring after all the itemsets of sa. For example, the sequence 〈{a}, {a}〉 and 〈{a}, {b}〉
and 〈{a}, {c}〉 are s-extensions of the sequence 〈{a}〉. A sequence sc is said to be an i-extension of sa
with an item x, if sc = 〈I1, I2, ...Ih ∪ {x}〉, i.e. sa is a prefix of sc and the item x is appended to the last
itemset of sa, and the item x is the last one in Ih according to the � order. For example, the sequences
〈{a, b}〉 and 〈{a, c}〉 are i-extensions of the sequence 〈{a}〉.

In general, sequential pattern mining algorithms can be categorized as being either depth-first search
or breadth-first search algorithms. Breadth-first search algorithms such as GSP proceed as follows.
They first scan the database to find frequent 1-sequences (sequential patterns containing a single item).
Then, they generate 2-sequences by performing s-extensions and i-extensions of 1-sequences, then 3-
sequences are generated using the 2-sequences, then 4-sequences are generated using the 3-sequences,
and so on until no sequences can be generated. This approach is also called a level-wise approach since
patterns are considered in ascending order of their length. For example, consider a sequence database
containing three items I = {a, b, c}. A breadth-first algorithm will first consider the 1-sequences 〈{a}〉,
〈{b}〉, and 〈{c}〉. Then, the algorithm will consider the 2-sequences 〈{a}, {a}〉, 〈{a}, {b}〉, 〈{a}, {c}〉,
〈{a, a}〉, 〈{a, b}〉, 〈{a, c}〉, 〈{b}, {a}〉, 〈{b}, {b}〉, 〈{b}, {c}〉, 〈{b, a}〉, 〈{b, b}〉, 〈{b, c}〉, 〈{c}, {a}〉, 〈{c}, {b}〉,
〈{c}, {c}〉, 〈{c, a}〉, 〈{c, b}〉, and 〈{c, c}〉. Then, the algorithm will consider the 3-sequences, 4-sequences,
and so on until no patterns can be generated. It can be observed that the search space can be very large,
as there are many different ways to combine items to generate a potential sequential pattern. Assume
that the longest sequence in a database contains x items. A breadth-first search sequential pattern mining
algorithm will explore in the worst case all possible sequences containing x items or less. If a database
contains m items, this number can be greater than 2m.

Depth-first search algorithms such as Spade [117], PrefixSpan [89], Spam [3], Lapin [111], CM-Spam [30],
and CM-Spade [30] explore the search space of patterns by following a different order. They start
from the sequences containing single items (e.g. 〈{a}〉, 〈{b}〉, and 〈{c}〉), and then recursively per-
form i-extensions and s-extensions with one of these sequences to generate larger sequences. Then,
when a pattern can no longer be extended, the algorithm backtrack to generate other patterns using
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other sequences. For example, consider a sequence database containing the items I = {a, b, c}, and
consider that only sequential patterns containing no more than three items are considered (for the pur-
pose of having a small example). A depth-first search algorithm assuming the lexicographical order
(e.g. c � b � a), which performs i-extensions before s-extensions will explore potential sequential pat-
terns following this order: 〈〉, 〈{a}〉, 〈{a, b}〉, 〈{a, b, c}〉, 〈{a, c}〉, 〈{a}, {a}〉, 〈{a}, {a, b}〉, 〈{a}, {a, c}〉,
〈{a}, {b}〉, 〈{a}, {b, c}〉, 〈{a}, {b}, {c}〉, 〈{a}, {c}〉, 〈{a}, {c}, {a}〉, 〈{a}, {c}, {b}〉, 〈{a}, {c}, {c}〉, 〈{b}〉,
〈{b, c}〉, 〈{b}, {a}〉, 〈{b}, {a, b}〉, 〈{b}, {a, c}〉, 〈{b}, {a}, {a}〉, 〈{b}, {a}, {b}〉, 〈{b}, {a}, {c}〉, 〈{b}, {b}〉,
〈{b}, {b, c}〉, 〈{b}, {b}, {a}〉, 〈{b}, {b}, {b}〉, 〈{b}, {b}, {c}〉, 〈{b}, {c}〉, 〈{b}, {c}, {a}〉, 〈{b}, {c}, {b}〉,
〈{b}, {c}, {c}〉, 〈{c}〉, 〈{c}, {a}〉, 〈{c}, {a, b}〉, 〈{c}, {a, c}〉, 〈{c}, {a}, {a}〉, 〈{c}, {a}, {b}〉, 〈{c}, {a}, {c}〉,
〈{c}, {b}〉, 〈{c}, {b, c}〉, 〈{c}, {b}, {a}〉, 〈{c}, {b}, {b}〉, 〈{c}, {b}, {c}〉, 〈{c}, {c}〉, 〈{c}, {c}, {a}〉,
〈{c}, {c}, {b}〉, and 〈{c}, {c}, {c}〉.

Since the search space of all possible sub-sequences in a database can be very large, designing an efficient
algorithm for sequential pattern mining requires to integrate techniques to avoid exploring the whole
search space. The basic mechanism for pruning the search space in sequential pattern mining is based
on the following property called the Apriori property, downward-closure property or anti-monotonicity
property. This property states that for any sequence sa and sb, if sa is a subsequence of sb (sa @ sb),
then sb must have a support that is lower or equal to the support of sa. For example, consider two
sequences 〈{a}〉 and 〈{a, b}〉. It is obvious that the support (the occurrence frequency) of 〈{a, b}〉 cannot
be greater than the support of 〈{a}〉 since 〈{a, b}〉 is more specific than 〈{a}〉. It is thus said that the
support measure is monotonic. The above property is useful for pruning the search space since if a
sequence is infrequent, if follows that all its extensions are also infrequent, and thus are not sequential
patterns. For example, consider the database of Table 1 and assume that minsup = 2. Since the pattern
〈{c}, {g}〉 is infrequent, all its extensions such as 〈{c}, {g}, {e}〉 are also infrequent and hence can be
ignored. The application of the downward-closure property can thus greatly reduce the search space of
sequential patterns.

In general, sequential pattern mining algorithms differ in (1) whether they use a depth-first or breadth-
first search, (2) the type of database representation that they use internally or externally, (3) how they
generate or determine the next patterns to be explored in the search space, and (4) how they count the
support of patterns to determine if they satisfy the minimum support constraint.

AprioriAll is the first sequential pattern mining algorithm [2]. The authors of AprioriAll then proposed
an improved version called GSP [98]. The AprioriAll and GSP algorithms are inspired by the Apriori
algorithm for frequent itemset mining [1].

GSP uses a standard database representation, as shown in Table 1, also called a horizontal database.
The GSP algorithm performs a level-wise search to discover frequent sequential patterns. It first scans the
database to calculate the support of all 1-sequences. Then, it keeps all frequent 1-sequences in memory.
For example, consider the sequence database of Table 1. The frequent 1-sequences are 〈{a}〉, 〈{b}〉, 〈{c}〉,
〈{e}〉, 〈{f}〉, and 〈{g}〉. Then, the GSP algorithm recursively explores larger patterns. During this search,
GSP uses the sequential patterns of length k to generates potentially frequent patterns of length k + 1.
This process of generating candidates is done by combining pairs of patterns of length k that share all
but one item. For example, in the above example, GSP will combine the 1-sequential patterns to obtain
2-sequences: 〈{a, b}〉, 〈{a, c}〉, 〈{a, e}〉, 〈{a, f}〉, 〈{a, g}〉, 〈{a}, {a}〉, 〈{a}, {b}〉, 〈{a}, {c}〉, 〈{a}, {e}〉,
〈{a}, {f}〉, 〈{a}, {g}〉, 〈{b, c}〉, 〈{b, d}〉, . . . 〈{g}, {g}〉. After generating candidates, the GSP algorithm
will evaluate each candidate to determine if it is a sequential pattern (if it has a support no less than the
minsup threshold), to identify patterns that should be output. This is done in two steps. First, for a
candidate pattern sa, GSP will check if all its sub-sequences of length k-1 are also frequent. If sa has a
subsequence that is not frequent, sa cannot be frequent (it would violate the downward-closure property).
Otherwise, GSP will scan the database to calculate the support of sa. If sa is frequent, it will be output.
In this example, GSP finds that the frequent 2-sequences are: 〈{a, b}〉, 〈{a}, {b}〉, 〈{a}, {c}〉, 〈{a}, {e}〉,
〈{a}, {f}〉, 〈{a}, {g}〉, 〈{b}, {e}〉, 〈{b}, {f}〉, 〈{b}, {g}〉, 〈{c}, {e}〉, 〈{c}, {f}〉, 〈{f, g}〉, 〈{f}, {e}〉, and
〈{g}, {e}〉. Then the GSP algorithm continues this process to generate sequential patterns of length 3,
4, and so on, until no pattern can be generated. The final set of sequential patterns is shown in Table 2.
The GSP algorithm is well-known since it is one of the first sequential pattern mining algorithms. In
recent years, many algorithms have been shown to be more efficient than GSP. The reason is that GSP
has several important limitations:

• Multiple database scans. One of the main problems of GSP is that it repeatedly scans the
database to calculate the support of candidate patterns. This can be very costly for large database,
even if some optimizations may be performed to reduce that cost (e.g. by sorting sequences by
their size to avoid comparing long patterns with short sequences).
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• Non-existent candidates. Another problem of GSP is that it may generate patterns that do
not exist in the database. The reason is that GSP generates candidates by combining smaller
patterns without accessing the database. Hence, GSP can waste time considering many patterns
that are non-existent in the database. For example, the pattern 〈{g}, {g}〉 would be considered as
a potential sequential pattern by GSP for the database of Table 1, although it does not appear in
this database.
• Maintaining candidates in memory. Another serious problem of the GSP algorithm is typical

of breadth-first search pattern mining algorithms. It is that at any moment it must keep all frequent
sequences of length k in memory to be able to generate patterns of length k+ 1. This can consume
a huge amount of memory.

The Spade [117] algorithm is an alternative algorithm that utilizes a depth-first search, and avoid some
of the drawbacks of the GSP algorithm. The Spade algorithm is inspired by the Eclat [116] algorithm for
frequent itemset mining. It utilizes a vertical database representation rather than an horizontal database
representation. The vertical representation of a sequence database indicates the itemsets where each item
i appears in the sequence database [117, 3, 30]. For a given item, this information is called the IDList of
the item. For example, Fig. 2 shows the vertical representation of the horizontal database of Figure 1.
In this example, the IDList of item g indicates that g occurs in the third and fourth itemsets of sequence
1, and in the second itemset of sequence 4. The vertical representation of an horizontal database (the
IDLists of all single items) can be created by scanning the horizontal database once. Note that it is also
possible to perform the reverse process to create an horizontal database from a vertical database (the
difference between an horizontal and vertical reprensentation of a database is just how the information
is stored).

Formally, the IDList of an item or pattern is defined as follows. Let there be a pattern sa =
〈A1, A2, ..., An〉 appearing in a sequence sb = 〈B1, B2, ..., Bm〉 (sa v sb). The item-positions of sa
in sb, denoted as ip(sa, sb), is the set of pairs of the form (sa, ik), where ik is an integer such that
1 ≤ i1 < i2 < ... < ik ≤ m and A1 ⊆ Bi1, A2 ⊆ Bi2, ..., An ⊆ Bik. For example, the item-positions
of the pattern 〈{a}〉 in the sequence s2 of Table 1 is {(s2, 1), (s2, 4)}, indicating that the pattern 〈{a}〉
appears in the first and fourth itemsts of sequence s2. The IDList of a pattern sa for a sequence data-
base SDB is defined as the list of all item-positions of sa in all sequences where it appears, that is
IDList(sa) =

⋃
savsb∧sb∈SDB ip(sa, sb). For example, the IDList of 〈{a}〉 (also depicted in Fig. 2) is

IDList(sa) = {(s1, 1), (s2, 1), (s2, 4), (s3, 1)}.
A vertical database has two interesting properties for sequential pattern mining. The first property is

that the IDList of any pattern allows to directly calculate its support. The support of a pattern sa is
simply the number of distinct sequence identifiers in its IDList. For example, the IDList of the pattern
〈{a, b}〉 is {(s1, 1), (s2, 3), (s2, 4), (s3, 2)}. The number of distinct sequence identifiers in this IDList is
3. Thus, the support of this patterns is 3. The second property is that the IDList of any pattern sa
obtained by performing an i-extension or s-extension of a pattern sb with an item i can be created without
scanning the original database by joining the IDList of sb with the IDList of the item i. For example,
by comparing the IDLists of patterns 〈{a}〉 and 〈{b}〉, it is possible to obtain the IDList of the pattern
〈{a, b}〉. The detailed process of this join operation is not presented here. The interested reader may
refer to the article describing the Spade [117] algorithm for more details.

Figure 2. A vertical database

By utilizing the above properties, algorithms such as Spade [117], Spam[3], CM-Spam [30], and CM-
Spade [30] explore the whole search space of patterns by reading the database only once to create the
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IDLists of single items. Then, the IDLists of any pattern encountered when browsing the search space
is obtained by performing the join of IDLists, which allows to calculate the support of the pattern.
Thus, all frequent patterns can be enumerated without repeatedly scanning the database, and without
maintaining a large number of patterns in memory (contrarily to breadth-first search algorithms). As
a result, this approach was shown to be one of the most efficient for sequential pattern mining, and to
greatly outperform the first algorithms, who adopted a breadth-first search approach.

The IDList representation is used in several sequential pattern mining algorithms. A popular opti-
mization of the IDList structure used in the Spam [3] and BitSpade [4] algorithms is to encode IDLists
as bit vectors. The motivation for this optimization is that IDLists can be very large when patterns
appear in many sequences (especially, in dense databases or databases containing long sequences), and
that applying the join operation of IDLists is costly as it requires to compare the elements of two IDLists.
The solution introduced in the Spam [3] algorithm is to represent IDLists as bit vectors. The bit vector
representation of an IDList is defined as follows. Let SDB be a sequence database containing k items
and m sequences, where size(i) denotes the number of itemsets in the i-th sequence of SDB. Consider a
pattern sa and its IDList IDList(sa). The bit vector representation of this IDList, denoted as BList(sa)
is a bitvector containing

∑m
i=1 size(i) bits, where the j-th bit represents the p-th itemset of the t-th se-

quence of SDB, such that
∑min(0,t−1)

i=1 size(i) < j <
∑t

i=1 size(i) and p = j −
∑min(0,t−1)

i=1 . The j-th bit
is set to 1 if (st, p) ∈ IDList(sa), and otherwise it is set to 0. For example, the bit vector representation
of the IDLists of single items is shown in Table 3.

Table 3. The bitvector representation of the vertical database

Item x IDList of x as a bit vector
a 100001001100000
b 100000011010010
c 010000100000000
d 000001000000000
e 000010001000100
f 001000001001001
g 001100000000001

Using bitvectors to represent IDLists can greatly reduce the amount of memory used for mining
sequential patterns with a vertical representation. This is especially true for dense datasets where many
bits are generally set to 1 in IDLists. For sparse datasets, many bits are set to 0, and thus the amount of
saved memory is less. Note that it is possible to use various bit vector compression techniques to further
compress the bit vectors. For example, some bit vector compression techniques have been used in various
pattern mining algorithm implementations to ignore some bits set to zero [35]. The version of the Spade
algorithm using bit vectors is called BitSpade [4]. Another algorithm that is similar to BitSpade and also
performs a depth-first search using bit vector IDLists is Spam [3]. Moreover, an algorithm inspired by
Spam called Fast [100] introduced the concept of indexed sparse IDLists, to more quickly calculate the
support of candidates and reduce memory usage. A version of Spade using bit vectors called Prism also
introduced the concept of Prime-block encoding [47]. It was shown that the Spam, BitSpade, and Prism,
which uses the bit vector representation, are more than an order of magnitude faster than the original
Spade algorithm [4, 3], while the Fast algorithm was shown to be faster than Spam [100] but was not
compared with Spade or the improved BitSpade algorithm.

Recently, the Spam [3] and BitSpade [117] algorithms were improved to obtain the CM-Spam and CM-
Spade algorithms [30]. These algorithms are based on the observations that Spam and Spade generate
many candidate patterns and that performing the join operation to create the IDList of each of them is
costly. To reduce the number of join operations, the CM-Spam and CM-Spade algorithm introduced the
concept of co-occurrence pruning [30]. It consists of initially scanning the database to create a structure
called the Co-occurrence Map (CMAP) that stores all frequent 2-sequences. Then, for each pattern sa
that is considered by the search procedure if the two last items of sa are not a frequent 2-sequences,
the pattern sa can be directly eliminated without constructing its IDList (thus without performing the
join operation). It was shown that CM-Spam and CM-Spade outperformed GSP, Spam, BitSpade [117],
and PrefixSpan by more than an order of magnitude. CM-Spade is claimed to be the current fastest
algorithm [30].

Besides breadth-first search algorithms and vertical algorithms, another important type of algorithms
for sequential pattern mining are the pattern-growth algorithms. These algorithms are depth-first search
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algorithms, designed to address a limitation of the previously described algorithms, which is to generate
candidate patterns that may not appear in the database. The reason why the previously described
algorithms may generate patterns not appearing in the database is that they generate candidate patterns
by combining smaller patterns but this process does not involve accessing the database.

Pattern-growth algorithms avoid this problem by recursively scanning the database to find larger
patterns. Thus, they only consider the patterns actually appearing in the database. Performing database
scans can however be costly. To reduce the cost of database scans, pattern-growth algorithms have
introduced the concept of projected database [53, 86, 89], which aims at reducing the size of databases as
larger patterns are considered by the depth-first search.

The most popular pattern-growth algorithm for sequential pattern mining is PrefixSpan [89], which
draws inspiration from the FPGrowth algorithm for itemset mining [53]. PrefixSpan proceeds as follows.
It explores the search space of sequential patterns using a depth-first search. It starts from sequential
patterns containing a single item and explores larger patterns by recursively appending items to patterns
to create larger patterns. To ensure that no patterns are generated twice, the items are appended to
patterns according to a total order on items ≺, which can be the lexicographical order or any other total
order. The first operation performed by PrefixSpan is to scan the original sequence database to calculate
the support of single items an identify the frequent items (those having a support that is no less than
the minsup threshold). Then, PrefixSpan outputs each of these items as a frequent sequential patterns,
and consider these patterns as seeds to pursue the depth-first search. During the depth-first search, for
a given sequential pattern sa of length k, PrefixSpan first creates the projected database of the pattern
sa. Then, PrefixSpan scans the projected database of sa to count the support of items to find items that
can be appended to sa by i-extension or s-extension to form (k + 1)-sequential patterns. This process is
then recursively repeated as a depth-first search to find all frequent sequential patterns.

Table 4. The projected sequence database of pattern 〈{a}〉

SID Sequence
1 〈{ , b}, {c}, {f, g}, {g}, {e}〉
2 〈{ , d}, {c}, {b}, {a, b, e, f}〉
3 〈{b}, {f}, {e}〉
4 〈{b}, {f, g}〉

Table 5. The projected sequence database of pattern 〈{a, b}〉

SID Sequence
1 〈{c}, {f, g}, {g}, {e}〉
2 〈{ , e, f}〉

We illustrate these steps with a short example. Consider that minsup = 2. By scanning the database of
Fig. 1, PrefixSpan will find that the frequent 1 sequences are 〈{a}〉, 〈{b}〉, 〈{c}〉, 〈{e}〉, 〈{f}〉, and 〈{g}〉.
These sequences will thus be output. Then, assuming the lexicographical ordering of items, PrefixSpan
will first consider the item a to try to find larger frequent sequences starting with the prefix 〈{a}〉.
PrefixSpan will thus scan the original database to build the projected database of 〈{a}〉, shown in Table
4. The projected database of the pattern 〈{a}〉 is the set of sequences where the pattern 〈{a}〉 appears,
but where all items and itemsets appearing before the first occurrence of 〈{a}〉 have been removed [89].
Then, to find frequent sequential patterns that starts with the prefix 〈{a}〉 containing one more item,
the Prefixspan algorithm will read the projected database of 〈{a}〉 and count the support of all items
appearing in that database that could be appended either by i-extension or s-extension to 〈{a}〉. For
instance, the 2-sequences that are i-extensions or s-extensions of 〈{a}〉 are: 〈{a, b}〉 : 2, 〈{a, d}〉 : 1,
〈{a}, {a}〉 : 1, 〈{a}, {b}〉 : 3, 〈{a}, {c}〉 : 2, 〈{a}, {e}〉 : 3, 〈{a}, {f}〉 : 4, and 〈{a}, {g}〉 : 2, where for each
pattern, the number after the colon (:) indicates its support. Then, PrefixSpan will output the sequential
patterns (those having a support greater than or equal to 2), that is: 〈{a, b}〉, 〈{a}, {b}〉, 〈{a}, {c}〉,
〈{a}, {e}〉, 〈{a}, {f}〉, and 〈{a}, {g}〉, Then, PrefixSpan will continue its depth-first exploration of the
search space by attempting to find sequential patterns starting with the prefix 〈{a, b}〉. PrefixSpan will
scan the database of the pattern 〈{a}〉 to create the projected database of 〈{a, b}〉. This database is
depicted in Table 5. While creating the projected database of 〈{a, b}〉, PrefixSpan will count the support
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of items that can extend 〈{a, b}〉 by i-extension of s-extension. This process will then continue in the
same way (by pursuing the depth-first search) until all sequential patterns have been found.

The pattern-growth approach of PrefixSpan has the advantage that it only explores patterns appearing
in the database (unlike many other sequential pattern mining algorithms). However, a drawback of
PrefixSpan and other pattern-growth algorithms is that it can be costly to repeatedly scan the database
and create database projections, in terms of runtime. Moreover, in terms of memory, creating database
projections can consume a huge amount of memory if it is naively implemented, as in the worst case it
requires to copy almost the whole database for each database projection. In the PrefixSpan algorithm
an optimization called pseudo-projection is used to reduce this cost, which consists of implementing a
projected database as a set of pointers on the original database [89, 86]. Another notable pattern-growth
sequential pattern mining algorithms is FreeSpan [51], an early version of PrefixSpan, proposed by the
same research team.

The time complexity of sequential pattern mining algorithms depends on the number of patterns in the
search space, and the cost of the operations for generating and processing each itemset. Pattern-growth
algorithms have the advantage over other algorithms of only considering patterns that actually appear in
the database. Thus, it would seem reasonable to expect that they would be faster than other algorithms.
However, in practice, it has been reported that this is not the case. The CM-Spade algorithm was for
example reported to outperform PrefixSpan by more than an order of magnitude [30]. The reason is that
the cost of scanning the database and performing projections can be quite high.

The number of patterns in the search space depends on how the minsup threshold is set by the user
and on how similar the sequences are in a sequence database. In general, as the minsup threshold is
decreased the number of sequential patterns found by sequential pattern mining algorithms can increase
exponentially. The search space for sequential pattern mining can be very large even for small sequence
databases containing a few sequences. For example, a sequence database containing only two identical
sequences of 100 items can contain 2100 sequential patterns.

In the above paragraphs, we have discussed the three main types of sequential pattern mining algo-
rithms: breadth-first algorithms that perform candidate generation (e.g. AprioriAll, and GSP), depth-
first search algorithms that perform candidate generation using the IDList structure and its variations (e.g.
Spade, Spam, BitSpade, Fast, CM-Spam, CM-Spade), and pattern-growth algorithms (e.g. FreeSpan,
PrefixSpan). Most sequential pattern mining algorithms extends these three main approaches.

3. Variations of the Sequential Pattern Mining Problem. The task of sequential pattern mining
has many applications. Nonetheless, for some applications, it also has some fundamental limitations.
To address this issue, several extensions or variations of the problem of sequential pattern mining have
been proposed. This section aims at providing and up-to-date review of some of the most popular
variations/extensions.

A first important limitation of the traditional problem of sequential pattern mining is that a huge
number of patterns may be found by the algorithms, depending on a database’s characteristics and how
the minsup threshold is set by users. Finding too many patterns is an issue because users typically do
not have much time to analyze a large amount of patterns. Moreover, as more patterns are found, the
algorithms’ performance typically decrease in terms of memory and runtime. To address this issue, a
solution that has been extensively studied is to discover concise representations of sequential patterns
instead of all sequential patterns [30, 31, 32, 28, 108, 109, 45, 44, 67, 64, 63, 46, 70, 92, 114, 48, 56]. A
concise representation is a subset of all sequential patterns that is meaningful and summarize the whole
set of sequential patterns.

Several concise representations of sequential patterns have been proposed and several algorithms have
been designed to directly discover these representations without extracting all sequential patterns. It
was shown that these algorithms can be order of magnitudes faster than traditional sequential pattern
mining algorithms and find a much smaller set of patterns. Some of these concise representations were
also shown to provide higher classification accuracy compared to using all sequential patterns for classi-
fication tasks [46, 92]. Let FS denotes the set of all sequential patterns. There are three main concise
representations of sequential patterns.

• Closed sequential patterns [56, 48, 30, 108, 109] are the set of sequential patterns that are not in-
cluded in other sequential patterns having the same support, that is: CS = {sa|sa ∈ FS∧ 6 ∃sb ∈ FS
such that sa @ sb ∧ sup(sa) = sup(sb)}. For example, consider the sequence database of Table 1.
Among the 29 sequential patterns found in this database for minsup = 2, only 16 of them are
closed sequential patterns (identified in Table 2). Discovering closed sequential patterns instead of
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all sequential patterns thus considerably reduce the result set presented to the user. The closed se-
quential patterns are interesting because they are a lossless representation of all sequential patterns,
that is using the closed sequential patterns, it is possible to recover all the sequential patterns and
their support without accessing the database. Another reason why the closed sequential patterns
are interesting is that they represents the largest subsequences common to sets of sequences. For
example, in market basket analysis, if each sequence represents a customer, the closed patterns
represent the largest patterns common to groups of customers. The first algorithms for closed
sequential pattern mining are CloSpan [109] and Bide [108], which are pattern-growth algorithms
extending PrefixSpan. Recent algorithms such as Clasp [48], CloFast [39] and CM-Clasp [30] adopt
a vertical representation and were shown to outperform early algorithms.
• Maximal sequential patterns [31, 28, 45, 44, 67, 64, 63] are the set of sequential patterns that are

not included in other sequential patterns, that is: MS = {sa|sa ∈ FS∧ 6 ∃sb ∈ FS such that
sa @ sb}. For example, Table 2 shows that among all the 29 sequential patterns found in the
database of Table 1, only 10 are maximal. An interesting property of maximal patterns is that
(MS ⊆ CS ⊆ FS). In other words, the set of maximal patterns is always not larger than the
set of closed sequential patterns and all sequential patterns. In practice, the number of maximal
patterns can be of several orders of magnitude less than closed patterns or all patterns. However,
maximal sequential patterns are not lossless. The maximal patterns may be used to obtain all
sequential patterns without scanning the database, but their support can only be recovered by
performing an additional database scan [31]. Several algorithms have been proposed for maximal
sequential pattern mining [31, 28, 45, 44, 67, 64, 63], including breadth-first search algorithms (e.g.
AprioriAdjust [63]), pattern-growth algorithms (e.g. MaxSP [28]), and vertical algorithms (e.g.
VMSP [31]). Moreover, approximate algorithms have also been proposed such as DIMASP [45].
Maximal sequential patterns have several applications such as to find the frequent longest com-
mon subsequences to sentences in texts, analysing DNA sequences, data compression and web log
mining [45].
• Generator sequential patterns (aka sequential generators) [32, 46, 70, 92, 114] are the set of sequen-

tial patterns that have no subsequence having the same support, that is: GS = {sa|sa ∈ FS∧ 6 ∃sb ∈
FS such that sb @ sa ∧ sup(sa) = sup(sb)}. For example, 14 sequential patterns are generators in
the database of Table 1, for minsup = 2 (depicted in Table 21). The set of sequential generators
is a subset of all sequential patterns, but can be larger, equal or smaller than the set of closed
patterns [70]. However, it can be argued that generators are preferable to other representations
according to the MDL (Minimum Description Length) principle [9] as generators are the smallest
subsequences that characterize group of sequences in a sequence database [32, 70, 92]. Additionally,
generators can be combined with closed patterns to generate rules with a minimum antecedent and
a maximum consequent, which allows deriving the maximum amount of information based on the
minimum amount of information [32]. This can be useful for example in market basket analysis [70].
Other usage of generators is for classification, where they were shown to provide higher accuracy
than using all patterns or closed patterns [46, 92]. Pattern-growth algorithms for mining sequen-
tial generators are GenMiner [70], FEAT [46] and FSGP [114]. A more recent algorithm named
VGEN [32], which extends the CM-Spam algorithm, was shown to ouperform FEAT and FSGP.

Algorithms for discovering concise representations of patterns are generally inspired by similar work on
itemset mining such as for the discovery of closed itemsets [65, 106, 120, 83, 7, 107], maximal itemsets [106],
and generator itemsets [101, 33, 103]. Several techniques and theoretical results from these works have
been adapted to sequential pattern mining. However, there are also some key differences between concise
representation of itemsets and sequential patterns. Some of the key differences are that in sequential
pattern mining, the set of generator patterns is not guaranteed to be a subset of the set of closed
patterns, and multiple closed patterns may correspond to a same set of sequences [70]. Algorithms
for mining concise representations generally adopt a candidate-maintenance-and-test approach, which
consists of exploring the search space of sequential patterns and keeping candidate patterns that may
belong to the desired concise representations in memory, until the final result is obtained (e.g. CloSpan,
VGEN, VMSP). Other algorithms, which are said to be without candidate generation (e.g. BIDE and
MaxSP), perform database scans to directly output patterns rather than keeping potential candidates in
memory.

1Note that the empty sequence 〈〉 is also considered to be a sequential generator, with a support of 4
sequences, although it is not shown in Table 2.
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To reduce the number of sequential patterns found and find more interesting patterns, researchers have
also proposed to integrate constraints in sequential pattern mining [91]. A constraint is an additional set
of criteria that the user provides to indicate more precisely the types of patterns to be found. Numerous
kinds of constraints have been studied. There are two ways of applying constraints. The first way is to
apply them as a post-processing step on the set of all sequential patterns to filter uninteresting patterns.
However, a problem with this approach is that enumerating all sequential patterns can consume a lot of
time and requires a huge amount of memory. The second way to address this problem is to push the
constraints deep in the mining process. In other words, the constraints are applied during the search
for patterns to reduce the search space. Algorithms adopting this approach can be orders of magnitude
faster, and generate much less patterns than traditional sequential pattern mining algorithms, depending
on the constraints used.

One of the first sequential pattern mining algorithm to integrate constraints is GSP [98]. It intro-
duced the constraints of minimum and maximum amount of time between two consecutive itemsets in
sequential patterns (gap constraints), as well as a maximum time duration for each sequential pattern
(duration constraint). The consideration of time constraints has also been the subject of the Hirate and
Yamana algorithm [113] and Fournier-Viger algorith [22], which have extended the PrefixSpan and BIDE
algorithm with gap and duration constraints. The integration of gap constraints in vertical algorithms
was done in Pex-Spam [54] by extending the Spam algorithm. Pei et al. studied the integration of various
constraints in pattern-growth algorithms such as items that should appear or not in sequential patterns
(item constraints), minimum/maximum number of items per sequential patterns (length constraints),
and aggregate constraints on prices of items in sequences such as average, minimum, maximum, sum
and standard deviation of prices (aggregate constraints) [91]. Another type of constraints considered
in sequential pattern mining is regular expressions (regular expression constraints). The SPIRIT [42]
algorithm lets users specify regular expressions on patterns to be found. It converts constraints to an
automaton for pruning patterns when performing a breadth-first search.

Pei et al. [91] and other researchers studied the characteristics of constraints that can be pushed deep
into the process of mining sequential patterns, and other types of patterns [87, 88, 10]. Three main types of
constraints have been identified. Anti-monotone constraints such as the minimum support threshold and
length constraints, gap constraints and duration constraints are some of the easiest and most beneficial
to integrate in a pattern mining algorithm, as they can be used to prune the search space by applying
the downward closure property. Convertible constraints are constraints that are neither monotone nor
anti-monotone but that can be converted to anti-monotone constraints if some additional strategies are
applied [87]. A succinct constraint is a constraint that can be checked for a pattern by only looking at
the single items that it contains. For example, the constraint that the sum of the weights of a sequential
pattern should be not greater or not less than a given value can be checked by simply adding the weights
of its items. This constraint is both succint and anti-monotone. For more information about the use of
constraints, the reader may refer to the referenced papers [91, 87, 88, 10].

Another limitation of traditional sequential pattern mining studies is that they solely focus on the
discovery of items that are positively correlated in sequence databases. However, for some applications,
negative correlations are more interesting than positive correlations. To address this limitation, the
problem of mining negative sequential patterns has been studied [118, 57, 119, 20]. A negative sequential
pattern is a pattern containing the negation of a least one item. Mining negative sequential patterns is
more difficult than mining only positive patterns as the search space becomes larger. To mine positive
and/or negative patterns, the Negative-GSP [118] and PNSP [57] algorithms were proposed, extending
GSP. Then, a genetic algorithm was proposed, which was shown to outperform these two algorithms [119],
as well as a SPADE-based algorithm named e-NSP [20].

Another interesting extension of the problem of sequential pattern mining is multi-dimensional sequen-
tial pattern mining [22, 85, 99]. It considers an extended type of sequence database where each sequence
can be annotated with dimensions having symbolic values. For example, in the context of market basket
analysis, a database of customer purchase sequences could be annotated with three dimensions: gender,
education level, and income. Then, a multi-dimensional sequential pattern mining algorithm can dis-
cover sequential patterns that are common to various dimension values. For example, a pattern could
be discovered with the dimension values (male, university, ∗) indicating that it is common to some male
customers having a university degree but with any income. To mine multi-dimensional patterns, there are
two main approaches: mining the dimensions using an itemset mining algorithm and then the sequential
patterns, or mining the sequential patterns and then mining the dimensions [22, 85, 99].

Another limitation of traditional sequential pattern mining algorithms is that they assume that se-
quence databases are static. In fact, traditional sequential pattern mining algorithms are said to be
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batch algorithms as they are designed to be applied once to a sequence database to obtain patterns.
Then, if the database is updated, algorithms need to be run again from scratch to obtain the updated
patterns. This approach is inefficient because sometimes only small changes are made to a database that
would not require to perform the whole search for patterns again. As a solution to this problem, several
incremental sequential pattern mining algorithms have been designed [13, 78, 82, 76, 74, 75]. To our
best knowledge, the first algorithm is ISM [84], which adopts an IDList approach inspired by SPADE to
update sequential patterns when new sequences are inserted in a sequence database (sequence insertion).
Another algorithm is IncSpan [13], which is based on the PrefixSpan algorithm. However, this algorithm
was found to rely on an incorrect property, and was fixed by Nguyen et al. [82]. Another recent algorithm
named PreFUSP-TREE-INs [74] is based on the pre-large concept, which consists of keeping a buffer of
almost frequent sequential patterns in memory to avoid scanning the database when few sequences are
inserted. Recently, algorithms have been also designed to handle sequence modifications [76] and sequence
deletions [75]. Among incremental algorithms, a few of them have also been designed to interactively
mine patterns by for example considering that the user may change the parameters of the algorithm and
perform multiple queries involving constraints [84]. Another interactive algorithm is KISP, which extends
the GSP algorithm [62].

A particular type of incremental algorithms called stream mining algorithms have been designed to
mine sequential patterns in a potentially infinite stream of sequences [55, 96, 14, 69]. They assume
that sequences may arrive at a very high speed and may be only read once. They are approximate
algorithms that are designed to process each sequence as quickly as possible. To our best knowledge,
the first algorithm for mining sequential patterns in streams is eISeq [14]. However, this algorithm
considers a simple type of sequence database where sequences of items are taken as input rather than
sequences of itemsets. The IncSPAM [55] algorithm is designed for the general case. It extends the
SPAM algorithm [55]. Algorithms were also designed for mining concise representations of patterns in
streams. For example, SPEED [96] and Seqstream [15] mine maximal and closed sequential patterns in
data streams, respectively. Generally, stream mining algorithms consider a recency constraint to discover
sequential patterns that are recently recent (but may be infrequent in the past).

Another extension of sequential pattern mining is top-k sequential pattern mining [29]. It consists of
discovering the k most frequent sequential patterns in a sequence database. The rationale for this problem
is that it is often difficult for user to set the minsup threshold using traditional sequential pattern mining
algorithms if the user has no background knowledge about the database. If the minsup threshold is set
too low, too many patterns may be found and the algorithms may become very slow, and if the minsup
threshold is set too high, too few patterns may be found. Top-k sequential pattern mining algorithms
address this problem by letting the users directly indicate the number of patterns k to be found instead
of using the minsup parameter. Top-k sequential pattern mining is a harder problem than sequential
pattern mining [29].

Some other extensions of sequential pattern mining extends the sequence database representation in
various ways to extract more rich patterns. The following paragraphs reviews some of the most popular
extensions.

• Weighted sequential pattern mining is an extension of sequential pattern mining where weights
(generally assumed to be in the [0,1] interval) are associated to each item to indicate their relative
importance [18, 112, 97]. The goal of weighted sequential pattern mining is to find sequential
patterns that have a minimum weight.
• High-utility sequential pattern mining (HUSPM) is an extension of weighted sequential pattern

mining where not only item weights are considered but also item quantities in sequences [5, 115,
72, 8]. The traditional problem of sequential pattern mining takes as input a sequence database
where purchase quantities are binary, that is each item appears in an itemset of a sequence or not.
For several applications, this assumption does not hold. For example, consider a sequence database
of customer transactions where customers may have bought zero, one, or several units of each
product. Not considering the purchase quantities may lead to discovering misleading patterns. To
address this limitation, HUSP generalizes the problem of sequential pattern mining by considering
that each item appears zero, once or multiple times in each itemset (purchase quantities), and that
each item has a weight indicating its relative importance (e.g. how much profit is generated by
each unit sold of the item). The goal of HUSP is to find all sequential patterns that have a utility
greater than or equal to a minimum utility threshold in a sequence database. The utility (profit)
of a sequential pattern is the sum of the maximum utility (profit) generated by the pattern in each
sequences where it appears [5, 115, 72, 8]. HUSP is quite challenging as the utility measure is
neither monotone nor anti-monotone unlike the support measure traditionally used in sequential
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pattern mining. Thus, the utility measure cannot be directly used to prune the search space.
To address this issue, HUSP algorithm have introduced upper-bounds on the utility of sequential
patterns such as the SWU [5] measure that are monotone, to prune the search space. A major
challenge in HUSP has been to develop tighter upper-bounds on the utility to be able to prune
a larger part of the search space, and improve the performance of HUSP [5, 115, 72, 8]. HUSP
is a very active research topic. Various extensions of the HUSP problem have been studied such
as to hide high utility sequential patterns in databases to protect sensitive information [95] and
discovering high-utility sequential rules [125].

• Uncertain sequential pattern mining is an extension of sequential pattern mining that considers
data uncertainty [80, 81, 121, 49, 50]. For many applications, data stored in databases is uncer-
tain for various reasons such that data has been collected using noisy sensors or that the data is
inaccurate or imperfect. Two main models have been designed to discover sequential patterns that
frequently appears in uncertain sequence databases [80]. The first model is called the expected-
support model [80]. According to this model, each item i appearing in an itemset X is annotated
with an existence probability pr(i,X) representing the certainty that this item appeared in the
itemset (a value in the [0,1] interval). The expected-support of a sequential pattern sa in a se-
quence is defined as the product of the expected-support of its items in the sequence if it appears in
the sequence, and otherwise 0. The expected-support of a sequential pattern sa in a database SDB
is the sum of its expected-support values for all sequences where sa appears2. The task of uncertain
sequential pattern mining in the expected support model is to discover all sequential patterns that
are expected to be frequent. A variation of this model also considers source uncertainty (whether a
sequence can be attributed to a given source instead of other(s)) [80]. The second model is the prob-
abilistic sequential pattern mining model [81]. To use this model, the user has to set two thresholds:
a minimum confidence threshold minprob and a minimum support threshold minsup. A sequential
pattern is then considered a probabilistic sequential pattern if the calculated probability that it
appears in more than minsup transactions by considering possible worlds is greater than minprob.
Various algorithm have been proposed for uncertain sequential pattern mining. Algorithms based
on GSP, SPAM and PrefixSpan were presented for the expected support model [81]. A PrefixS-
pan based algorithm named SeqU-PrefixSpan was proposed for the probabilistic sequential pattern
mining model [121]. In a variation of the problem of uncertain sequential pattern mining [49], the
uncertainty of timestamps for events was considered. Besides, designing scalable algorithms for
uncertain sequential pattern mining using the Spark big data framework has also been studied [50].

• Fuzzy sequential pattern mining is another important extension of sequential pattern mining [21, 52].
It considers databases where items in sequences takes quantitative values (in the [0,1] interval), and
where fuzzy membership functions are used to map these values to nominal values. For example,
some items chocolate bar and soft drink in a sequence could be annotated with values of 0.5 and
0.7 representing their respective sweetness, which could be translated to nominal values such as
sweet and very sweet. To compute the support in a fuzzy sequence database, various algorithms
have been proposed [21, 52] based on different ways of counting the occurrence of patterns in fuzzy
sequences. For instance, the SpeedyFuzzy and MiniFuzzy algorithms count a pattern as appearing
in a sequence if (1) the membership values of all its items are greater than 0, or (2) if they are
greater than some threshold, respectively [21]. Numerous studies about discovering other types of
fuzzy patterns such as fuzzy itemsets have also been published [16, 73].

4. Other pattern mining problems. Besides sequential pattern mining, several other pattern mining
problems have been studied. Research on these problems have inspired research on sequential pattern
mining. This sections reviews some of the most important related problems.

• Itemset mining is the task of discovering frequent itemsets [1, 53, 116, 86, 106] in a transaction
database. It can be seen as a special case of the sequential pattern mining problem where each
sequence contains a single itemset. Thus, all items are assumed to be simultaneous, and there is
no sequential ordering between items. Formally, a transaction database D is a set of transactions,
where each transaction T is an unordered set of items. An itemset X is a set of items. The
support of an itemset X is the number of transactions that contain the itemset, that is sup(X) =
|{T |X ⊆ T ∧ T ∈ D}|. Given a minimum support threshold minsup set by the user, the goal of
frequent itemset mining is to find all frequent itemsets, that is all itemsets having a support no less

2Note that if a pattern is allowed to appear multiple times in a sequence, this definition needs to be
generalized.



68 P. Fournier-Viger, Jerry C. W. Lin, R. U. Kiran, Y. S. Koh and R. Thomas

than minsup. Numerous extensions of the problem of itemset mining are similar to variations of
the sequential pattern mining problem such as high-utility itemset mining [71, 36, 126], uncertain
itemset mining [121, 49, 50], fuzzy itemset mining [16, 73], and stream itemset mining [12, 102].
• Association rule mining (ARM) [1, 26, 68] consists of finding association rules in a transaction data-

base. ARM also does not consider the sequential ordering of items. An association rule is a pattern
of the form X → Y where X and Y are two itemsets such that X∩Y = ∅. Association rules are eval-
uated using interestingness measures. The two traditional measures used in association rule mining
are the support (sup(X → Y ) = sup(X∪Y )) and confidence (conf(X → Y ) = sup(X∪Y )/sup(X)).
The support of a rule measures how often it appears in a database, while the confidence can be
seen as a measure of the conditional probability P (Y |X). To find association rules, a user has to
provide two thresholds: a minimum support threshold and a minimum confidence threshold. The
result of ARM is the set of all rules having a support and confidence respectively no less than these
thresholds. An advantage of association rules over frequent itemsets is that association rules not
only assess how frequently items co-occur but also if there is a strong association between them.
It is interesting to note that besides the support and confidence, more than 20 other interesting-
ness measures have been proposed in the literature. The interested reader may refer to Lenca et
al. [68] for a survey of association rule measures. Generating association rules is generally done in
two phases: mining frequent itemsets in a transaction database, and then using these itemsets to
generate the rules [1].
• Sequential rule mining is a variation of the sequential pattern mining problem where sequential

rules [38, 34] of the form X → Y are discovered, indicating that if some items X appear in a
sequence it will be followed by some other items Y with a given confidence. The concept of a
sequential rule is similar to that of association rules excepts that it is required that X must appear
before Y according to the sequential ordering, and that sequential rules are mined in sequences
rather than transactions. Sequential rules address an important limitation of sequential pattern
mining, which is that although some sequential patterns may appear frequently in a sequence
database, the patterns may have a very low confidence and thus be worthless for decision-making
or prediction. For example, consider the database of Table 1. The sequential pattern 〈(f)(e)〉
is considered frequent if minsup = 2 because this pattern appears in 2 sequences. Thus, it may
be tempting to think that f is likely to be followed by e in other sequences. However, this is
not the case. By looking at Table 1, it can be found that f is actually followed by e in only
two of the four sequences where f appears. This example shows that sequential patterns can be
misleading. Sequential rules addresses this problem by not only considering their support but also
their confidence. For example, the sequential rule {f} → {e} has a support of 2 sequences and a
confidence of 50%, indicating that although this rule is frequent, it is not a strong rule. Formally,
the confidence of a sequential rule X → Y is defined as the number of sequences containing the items
X before the items Y divided by the number of sequences containing the items X [38]. Numerous
sequential rule mining have been proposed such as RuleGrowth [38] and ERMiner [34], which
respectively adopt a pattern-growth and a vertical approach for discovering rules. Moreover, several
variations of the problem have been proposed for example to mine sequential rules with a window
constraint [38], mine high-utility sequential rules [125] and to discover the top-k most frequent
sequential rules [24]. Sequential rules have been reported as more effective than sequential patterns
for some tasks involving prediction [38]. Sequential rule mining has numerous applications such as
e-learning, web page prefetching, anti-pattern detection, alarm sequence analysis and restaurant
recommendation [34].
• Episode mining is another pattern mining problem that shares many similarities with sequential

pattern mining. The main difference is that episode mining aims at finding patterns in a single
sequence rather than a set of sequences. The goal of episode mining is to find itemsets (sets
of items) frequently appearing in a sequence (frequent episodes) or to discover rules of the form
X → Y (episode rules), indicating that X often appears before Y within a time window set by
the user. Epsiode mining can be used to analyze various types of data such as web-click streams,
telecommunication data, sensor readings, sequences of events on an assembly line and network
traffic data [77, 122].
• Periodic pattern mining [41, 105, 60, 61] consists of finding patterns that appear frequently and pe-

riodically in a single sequence. The periodicity of a pattern is measured based on its period lengths.
The period lengths of a pattern are the time elapsed between any two consecutive occurrences of the
pattern. To discover periodic patterns, a user has to specify constraints on period lengths such as a
minimum and maximum average period length, and a maximum period length [105]. Applications
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of periodic pattern mining are numerous, and include stock market analysis, market analysis and
bioinformatics [41].

• Sub-graph mining [110, 59, 11] is another popular pattern mining problem. The goal of sub-graph
mining is to find all frequent sub-graphs in a large graph or a database of graphs. To mine sub-
graphs, the user must specify a minimum support threshold. Then, a sub-graph mining algorithms
outputs all graphs appearing frequently. Unlike sequential pattern mining, the traditional problem
of sub-graph mining do not consider the time dimension. Graph mining is a quite challenging task
because the search space can be very large even for small graph databases and it is necessary to de-
sign strategies to check if different generated graphs are isomorphic [110]. Various extensions of the
problem of sub-graph mining have been studied such as closed and maximal sub-graph mining [59].
Sub-graph mining has various applications such as the analysis of chemical compounds [110, 59, 11].

5. Large Research opportunities. The problem of sequential pattern mining and other related prob-
lems have been studied for more than two decades, and are still very active research areas. There are
many possibilities for further research on sequential pattern mining. Below, we list some important
research opportunities.

• Applications. An important research opportunity is to utilize sequential pattern mining in new
applications, or in new ways for existing applications. Since sequential data occurs in many fields,
there are many ways that sequential pattern mining can be applied. One of the most interesting
and promising possibility is to apply sequential pattern mining in emerging research fields such as
the internet of things, social network analysis and sensor networks.

• Developing more efficient algorithms. Sequential pattern mining is computationally expensive in
terms of runtime and memory. This can a problem for dense databases, or databases containing
numerous sequences or long sequences, depending on the minsup threshold chosen by the user. For
this reason, many studies have been done on improving the performance of sequential pattern min-
ing algorithms by developing novel data structures and algorithms, and introducing constraints.
Although current algorithms are much faster than the first algorithms, there is still a need for
improvement. Besides, more research should be carried on designing efficient algorithms for vari-
ations of the sequential pattern mining problem such as uncertain sequential pattern mining and
high-utility sequential pattern mining. Some promising areas of research are the design of parallel,
distributed, multi-core, and GPU-based algorithms. In general, depth-first search algorithms are
easier to parallelize than breadth-first search algorithms.

• Designing algorithms to handle more complex data. Another interesting research opportunity is to
extend sequential pattern mining algorithms so that they can be applied to sequence databases con-
taining more complex types of data. Some extensions have been mentioned in this paper. However,
there are still many possibilities. This research is important since it will allows sequential pattern
mining to solve new real-world problems. Some recent researches have for example considered the
spatial dimension [19].

• Designing algorithms for finding more complex and meaningful patterns. Another imported issue
is to find more complex patterns in sequences. Furthermore, to find more meaningful patterns,
research should be further carried to develop interestingness measures and evaluation methods for
evaluating the usefulness of the patterns found [68]. This would lead to finding more interesting
and useful patterns.

6. Open-source Implementations. Although sequential pattern mining has been studied for more
than two decades, an important issue is that the majority of researchers in this field do not release their
implementations or source code. This is problematic because other researchers often need to re-implement
algorithms from other researchers to be able to use their algorithms or compare their performance with
novel algorithms. But when a researcher implement the algorithm of another researcher, there always
remains a doubt that the implementation may not be as efficient as the original algorithm. Besides,
even when binary files are released it has been noted in studies such as the one of Goethal [43] that
the performance of pattern mining algorithms may vary greatly depending on the compiler used and the
machine architecture used for running performance comparison.

The solution to the above issue is that more researchers share implementations of their algorithms. To
our best knowledge, the largest collection of open-source implementations of sequential pattern mining
algorithms is the SPMF data mining library [35, 40] ( http://www.philippe-fournier-viger.com/

spmf/). It provides more than 120 algorithms for discovering patterns in databases such as sequential
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patterns, sequential rules, periodic patterns, itemsets and association rules. The SPMF library is devel-
oped in Java and is multi-platform. Its source code is released under the GPL3 license. It is designed
to be easily integrated in other Java software programs, and can be run as a standalone software using
its command-line or graphical user interface. Datasets used for benchmarking sequential pattern mining
algorithms can be found on the SPMF website.

Another important issue related to the public release of algorithm implementations is that many
researchers do not compare the performance of new algorithms with the previous best algorithms. It is
recommended that researchers proposing new algorithms compare their performance with the previous
best algorithms.

7. Conclusion. This paper has provided a detailled survey of sequential pattern mining. The paper
has presented the main types of algorithms for discovering sequential patterns. Moreover, the paper has
presented important extensions of the sequential pattern mining problems that address some shortcom-
ings of sequential pattern mining. In addition, the paper has discussed other research problem related
to sequential pattern mining such as itemset mining, association rule mining, sequential rule mining
and periodic pattern mining. Finally, the paper has discussed research opportunities and open-source
implementations of sequential pattern mining algorithms.
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