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Abstract

Periodic-Frequent Pattern Mining (PFPM) is an emerging problem, which consists of identifying frequent
patterns that periodically occur over time in a sequence of events. Though PFPM is useful in many domains,
traditional algorithms have two important limitations. First, they are not designed to find rare patterns.
But discovering rare patterns is useful in many domains (e.g. to study rare diseases). Second, traditional
PFPM algorithms are generally designed to find patterns in a single sequence, but identifying periodic
patterns that are common to a set of sequences is often desirable (e.g. to find patterns common to several
hospital patients or customers). To address these limitations, this paper proposes to discover a novel type
of patterns in multiple sequences called Rare Correlated Periodic Patterns. Properties of the problem are
studied, and an efficient algorithm named MRCPPS (Mining Rare Correlated Periodic Patterns common to
multiple Sequences) is presented to efficiently find these patterns. It relies on a novel RCPPS-list structure
to avoid repeatedly scanning the database. Experiments have been done on several real datasets, and it was
observed that the proposed MRCPPS algorithm can efficiently discover all rare correlated periodic patterns
common to multiple sequences, and filter many non rare and correlated patterns.

Keywords: Periodic pattern, Rare pattern, Correlated pattern, Sequences

1. Introduction

Frequent Pattern Mining (FPM) [1, 2, 3] is the task of discovering patterns in a database that have an
occurrence frequency (support) that is no less than a minimum support threshold (minsup), set by the user.
FPM has been applied in several domains [4, 5]. But most studies have focused on discovering patterns
such as frequent itemsets and association rules, and do not consider the time or sequential ordering between5

symbols (e.g. events). There are many applications for which insightful information can be revealed by
analyzing when a pattern occurs. An emerging data mining task of this type is Periodic-Frequent Pattern
Mining (PFPM) [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], which is a generalization of FPM. PFPM consists of
identifying frequent patterns that periodically occur over time. An example of periodic pattern in market
basket data is that a customer buys some items every week. Finding such patterns can help understanding10

customer behavior, and thus supports the design of appropriate marketing strategies. PFPM has numerous
applications, including website user behavior analysis [16], genetic data analysis [17], cross-marketing in retail
stores [12], and mobility intention analysis [18]. Even though PFPM is useful in various domains, traditional
algorithms have two important limitations. First, most algorithms for identifying periodic patterns focus
on discovering frequent patterns, but periodic patterns that are rare are also interesting. For example, rare15

periodic patterns could be found to study rare diseases in medical data (symptoms caused by latent viruses
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that appear periodically). The second limitation is that algorithms for discovering periodic patterns are
generally designed to find patterns in a single sequence, but identifying periodic patterns that are common
to a set of sequences is also desirable. For instance, in market basket analysis, it is desirable to discover
periodic patterns that are common to several customers (e.g. many customers periodically buy milk and20

bread) to understand their behavior.
Addressing these two limitations is not straightforward. To cope with multiple sequences, a naive solution

is to apply a traditional PFPM algorithm [6] on each sequence and then to combine the patterns found in
each sequence to find periodic patterns common to multiple sequences. But this is inefficient as a huge
number of patterns would have to be kept in memory, and combining these patterns would be very costly.25

Recently, an algorithm named PHUSPM [14] has been proposed to mine periodic patterns when considering
multiple sequences as a sequence. But this algorithm does not guarantee that patterns are periodic inside
each sequence. To find patterns that are truly periodic in many sequences, we have recently proposed the
MPFPS algorithm [15]. However, how to extend that algorithm to mine rare periodic patterns is not trivial.

A simple solution to mine rare periodic patterns in a single sequence or multiple sequences is to adapt30

algorithms to replace the minimum support threshold by a maximum support threshold (maxSup), and then
find patterns having a support lower than that threshold. However, this solution does not allow to reduce the
search space because subsets of a rare pattern can be frequent patterns. Hence, all rare and frequent patterns
(having a support greater than maxSup) would have to be checked to find the rare patterns. Thus, novel
strategies must be designed to reduce the search space and efficiently mine rare periodic patterns. Besides,35

a challenge is that a huge number of rare periodic patterns can be spurious due to their low occurrence
frequencies. Thus, an appropriate technique must be used to filter spurious patterns.

Moreover, to mine rare periodic patterns, the concept of periodic patterns must also be revised. In
traditional PFPM, a pattern is deemed periodic if all its periods (number of transactions between consecutive
occurrences) are no larger than a user-specified maximum periodicity threshold (maxPer). But applying40

this definition to mine rare periodic patterns would pose a problem because rare patterns generally have
very large periods (see Lemma 1).

In this paper, we address the above challenges by proposing a novel framework for mining Rare Correlated
Periodic Patterns common to multiple Sequences (RCPPSs). The major contributions of this work are
summarized as follows:45

• To find rare periodic patterns that are not spurious, this paper proposes to use the bond correlation
measure to identify strongly correlated periodic patterns. By combining this measure with the concept
of periodic patterns, a new type of patterns is defined called Rare Correlated Periodic Patterns.
Effective pruning properties are implemented to discover these patterns in multiple sequences.

• To evaluate if rare patterns are periodic (appear regularly) in each sequence, a new measure is defined,50

which is the standard deviation of periods. Moreover, a novel periodicity measure named sequence
periodic ratio (ra) is defined to find patterns that are periodic in multiple sequences. To effectively
reduce the search space, an upper-bound on the ra measure, called upBondRa, is developed and a
novel pruning property is proposed.

• An algorithm named MRCPPS (Mining Rare Correlated Periodic Patterns common to multiple Se-55

quences) is proposed to efficiently find all rare correlated periodic patterns. It relies on a novel
RCPPS-list structure to avoid repeatedly scanning the database1.

• Experiments have been done on several real datasets. It is observed that the proposed MRCPPS
algorithm can efficiently discover all rare correlated periodic patterns common to multiple sequences,
and that interesting patterns are revealed.60

The rest of this paper is organized as follows. Section 2 reviews related work. Section 3 defines the
problem of RCPPS. Section 4 presents the MRCPPS algorithm. Section 5 describes the experimental
evaluation. Finally, Section 6 draws the conclusion and discusses future work.

1Note that MRCPPS extends the MPFPS algorithm [15] to mine rare correlated periodic patterns. This extension is done
for the special issue of the best papers of the DAWAK 2018 conference, where MPFPS was published.
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2. Related work

The following paragraphs survey related work on periodic-frequent pattern mining and rare correlated65

pattern mining.

2.1. Periodic Frequent Pattern Mining

The task of Frequent Itemset Mining (FIM) was first proposed to discover the sets of items (called
frequent itemsets) that appear in numerous customer transactions [4, 5]. But it can be more generally
viewed as the task of discovering frequently co-occurring values in records of a binary attribute database.70

To discover frequent itemsets, the Apriori [2] algorithm was first defined. Apriori first scans the database
to find frequent items. Then, Apriori recursively joins small patterns to produce patterns containing more
items. Apriori scans the database to evaluate the frequency of each pattern and outputs the frequent itemsets.
Apriori is a correct and complete algorithm. However, it performs multiple database scans that can be very
time-consuming. The AprioriTID [2] and Eclat [3] algorithms address this issue by scanning a database75

once to create a structure called tid-list that stores the list of transactions where each item appears. Then,
the tid-list of larger patterns are found by joining the tid-lists of some of their sub-patterns. The tid-list
structure is useful as it allows to efficiently calculate the support of a pattern without scanning the database.
The key difference between AprioriTID and Eclat is that the former utilizes a breadth-first search while the
latter apply a depth-first search based on the concept of equivalence classes [3]. Though, FIM algorithms80

have been used in many domains and several other algorithms have been developed thereafter [4, 5], FIM is
inappropriate for identifying patterns that appear periodically in a database.

To identify periodic patterns, Tanbeer et al. [6] defined the task of PFPM in a sequence of transactions
(events). They found that interesting patterns regularly appear in data, and proposed a pattern-growth
algorithm [6] to identify these patterns. In that work, an itemset is said to be periodic in a sequence if85

it appears a minimum number of times and the number of transactions between each occurrence is not
greater than a minPer (minimum periodicity) threshold. Then, several more efficient algorithms have
been designed, and variation of the problem of mining periodic patterns in a single sequence have been
proposed [7, 8, 9, 10, 11, 12, 13, 14, 19]. For instance, the MTKPP algorithm was introduced to find the
top-k most frequent periodic patterns in a sequence [7]. Rashid et al. [9] proposed an approach to mine90

frequent patterns that occur at regular intervals in a transactional database. In that approach, periodicity
is measured based on the variance of the time between pattern occurrences. In another work, Kiran et
al. [19] addressed the ”rare item problem” by proposing to define a minimum support threshold for each
item rather than using the same threshold for all items. To find patterns that are periodically bought by
customers and generate a high profit, two algorithms named PHM[12] and PHUSPM[14] were proposed that95

consider the utility of patterns. The utility is a numeric measure of importance such as profit [20, 21]. To
find stable periodic patterns in a transaction database with timestamps, the SPP-Growth algorithm was
recently proposed [22].

Though there are many papers on periodic pattern mining, most studies focus on discovering frequent
patterns in a single sequence. The topic of mining rare correlated periodic patterns in multiple sequences100

has not been addressed. The next subsection reviews related work about rare and correlated pattern mining.

2.2. Rare Correlated Pattern Mining

The goal of FIM and association rule mining is to identify interesting relationships between values (items)
in a database [2, 23, 24]. Two major types of patterns can be found: frequent and rare patterns. In recent
years, there has been an increasing focus on discovering rare patterns because it has numerous high impact105

applications such as detecing computer attacks and fraudulent credit card transactions [25, 26]. However,
rare pattern mining is challenging as an enormous number of candidates may be generated to mine rare
patterns because the support measure cannot be used to reduce the search space as in traditional FIM.
Moreover, a challenge is that some rare patterns may be spurious due to their low occurrence frequency.
To reduce the computational complexity of mining rare patterns and avoid finding spurious patterns, recent110

studies have considered mining rare correlated patterns [26, 27, 28, 29]. To measure correlation, various
measures have been used in FIM such as the any-confidence and all-confidence [13, 24, 30], frequence
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affinity [31], coherence [32], and bond [24, 29, 30, 33, 34]. Although the above studies can find useful
patterns in many applications, they do not consider the periodical behavior of patterns. To our knowledge,
only Kiran et al. [13] has employed a measure of correlation in PFPM (the all-confidence measure). But it115

is not for discovering rare patterns and it is only for mining patterns in a single sequence. In this paper, we
integrate the bond measure to propose a general model and algorithm for mining rare correlated periodic
patterns in multiple sequences. The bond measure was selected because it is a simple and effective correlation
measure, and it has recently attracted the attention of many researchers [24, 29, 30, 33, 34].

3. Definitions and problem statement120

This section first presents the problem of discovering rare correlated periodic patterns in a single sequence
using a novel measure called the periodic standard deviation and the bond measure to filter uninteresting
periodic patterns. Then, the problem of rare correlated periodic pattern mining is generalized to mine
patterns in multiple sequences (a sequence database).

Definition 1 (Sequence database). Let I be a set of items (symbols or binary values) occurring in a125

database. A subset X ⊆ I is called an itemset. The length of an itemset containing k items is k. Moreover,
such itemset is called a k-itemset. A sequence s is an ordered list of itemsets s = 〈T1, T2, · · · , Tm〉, such
that Tj ⊆ I (1 ≤ j ≤ m), Tj is called a transaction, and j is called the TID (Transaction IDentifier) of
Tj . A sequence database SDB is an ordered set of n sequences, denoted as SDB = 〈s1, s2, · · · , sn〉. The
sequence si of SDB (1 ≤ i ≤ n) is said to be the i-th sequence of SDB, and its Sequence IDentifier (SID)130

is said to be i. An itemset X is said to appear in a sequence sa = 〈A1, A2, · · · , Ak〉, denoted as X v sa,
iff there exists an integer 1 ≤ q ≤ k such that X ⊆ Aq. In such case X is also said to occur in transaction
Aq. And more generally, a sequence sa = 〈A1, A2, · · · , Ak〉 is said to be contained in another sequence sb
= 〈B1, B2, · · · , Bl〉, denoted as sa v sb, iff there exist integers 1 ≤ q1 ≤ q2 ≤ · · · ≤ qk ≤ l such that
A1 ⊆ Bq1, A2 ⊆ Bq2, · · · , Ak ⊆ Bqk.135

Table 1: A sequence database

SID Sequence
1 〈{a, c, e}, {a, b, e}, {a, d}, {a, b, e}, {a, c}〉
2 〈{c}, {a, b, c, e}, {c, d}, {a, b, c, e}, {a, b, d}〉
3 〈{b, c}, {a, b}, {a, c, d}, {a, c}, {a, b}〉
4 〈{a, b, d, e}, {a, b}, {a, c}, {a, b, d, e}, {a, d}〉

In the following, the sequence database shown in Table 1 will be used as running example. It contains
four sequences. The third sequence (s3) contains five itemsets. The first itemset contains two items (b and
c). Hence, it is a 2-itemset. The itemset {a, c} appears in the third and fourth transactions of sequence s3.
The sequence 〈{b}, {a, c}〉 also appears in s3. To identify periodic patterns in a sequence, the concept of
period was proposed in PFPM [6].140

Definition 2 (Periods of an itemset in a sequence). Consider a sequence si of a database SDB and
an itemset X. The ordered list of transactions where X appears in si is denoted as TR(X, si) = 〈Tg(1),
Tg(2), · · · , Tg(k)〉 v si. Moreover, k is called the support (number of appearances) of X in si and is
denoted as sup(X, si) = |TR(X, si)|. Let Tg(z) and Tg(z+1), z ∈ [1, k − 1] be a pair of consecutive
transactions where X appears in si. The period of two consecutive transactions Tg(z) and Tg(z+1) for145

itemset X is per(Tg(z), Tg(z+1)) = g(z + 1) − g(z). The periods of X in a sequence si are pr(X, si) =
{per1, per2, · · · , perk+1} where per1 = g(1)− g(0), per2 = g(2)− g(1), · · · , perk+1 = g(k + 1)− g(k), where
g(1), g(2), · · · , g(k) are the TIDs of transactions where itemset X occurs and g(0) and g(k + 1) are defined
as g(0) = 0 and g(k + 1) = |si|, where |si| is the length of si.
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For example, the itemset {a, e} occurs in transaction T1, T2 and T4 of sequence s1, i.e. TR({a, e}, s1) =150

{T1, T2, T4}. Thus, the support of pattern {a, e} in that sequence is sup({a, e}, s1) = |TR({a, e}, s1)| = 3
and its periods are pr({a, e}, s1) = {1, 1, 2, 1}.

In traditional PFPM [6], a pattern (itemset) is considered as periodic-frequent in a sequence if its
maximum period is no greater than a user-specified maximum period threshold (maxPr), and its support
is no less than a minimum support threshold (minSup). For instance, consider the database of Table 1,155

maxPr = 3 and minSup = 3. The itemset {a, e} is periodic-frequent in sequence s1 since its maximum
period is max{1, 1, 2, 1} = 2 ≤ maxPr and sup({a, e}, s1) = 3 ≥ minSup. Nonetheless, a major drawback of
the maxPr constraint is that a pattern is discarded if it has just one or a few periods greater than maxPer.
But on the other hand, if a large value is set for maxPer, patterns having periods that vary greatly may
be output as periodic patterns. To address these issues, several alternative periodicity measures have been160

considered [7, 19, 8, 9, 10, 11, 12, 13, 14]. However, most of these studies focus on finding periodic patterns
with high frequency, and do not consider rare periodic patterns. To address the limitations of the maxPer
constraint, this paper proposes to assess a pattern’s periodicity using the standard deviation of periods.

Definition 3 (Standard deviation of periods). The average period of a pattern X in a sequence s is

avgPr(X, s) =
∑k+1

i=1 peri
k+1 , where k = sup(X, s). The standard deviation of periods of pattern X in s is165

stanDev(X, s) =

√∑k+1
i=1 (peri−avgPr(X,s))2

k+1 .

For instance, itemset {a, e} has the periods pr({a, e}, s1) = {1, 1, 2, 1} in sequence s1. Hence, its av-
erage period is avgPr({a, e}, s1) = (1 + 1 + 2 + 1)/4 = 1.25, and the standard deviation of its periods is
stanDev({a, e}, s1) =

√
[(1− 1.25)2 + (1− 1.25)2 + (2− 1.25)2 + (1− 1.25)2]/4.

Two lemmas allows to efficiently calculate the average and standard deviation of periods.170

Lemma 1 (Average period calculation). An alternative way of calculating the average period of an

itemset X in a sequence s is avgPr(X, s) = |s|
sup(X,s)+1 .

Proof 1. The average period of a pattern X in a sequence s is avgPr(X, s) =
∑k+1

i=1 peri
k+1 , where k =

sup(X, s). To prove the lemma, we show that
∑k+1

i=1 peri = |s| holds:

k+1∑
i=1

peri = (g(1)− g(0)) + (g(2)− g(1)) + · · ·+ (g(k)− g(k − 1)) + (g(k + 1)− g(k))

= −g(0) + (g(1)− g(1)) + (g(2)− g(2)) + · · ·+ (g(k)− g(k)) + g(k + 1)

= g(k + 1)− g(0) = |s|

Lemma 2 (Relationship between standard deviation of periods and support). Let the periods of
a pattern X in a sequence s be pr(X, s) = {per1, per2, · · · , perk+1}, where k = sup(X, s). An alternative

way of calculating the standard deviation of periods is stanDev(X, s) =

√∑k+1
i=1 (peri)2

k+1 − ( |s|k+1 )2.175

Proof 2. We need to show that
∑k+1

i=1 (peri−avgPr(X, s))2 =
∑k+1

i=1 (peri)
2− |s|2

(k+1) . This is done as follows:

k+1∑
i=1

(peri − avgPr(X, s))2 =

k+1∑
i=1

(peri)
2 − 2

k+1∑
i=1

(peri ∗ avgPr(X, s)) +

k+1∑
i=1

(avgPr(X, s))2

=

k+1∑
i=1

(peri)
2 − (k + 1)(avgPr(X, s))2 (by Definition 3)

=

k+1∑
i=1

(peri)
2 − |s|2

k + 1
(by Lemma 1)
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Lemmas 1 and 2 are useful to efficiently calculate the standard deviation of periods of itemsets in a
sequence. By Lemma 1, if the term |s| is calculated once, the average period of any itemset X in s can then
be direclty obtained by dividing sup(X, s) + 1 by the result. Using Lemma 2, for each i, time to calculate
the difference between peri and avgPr(X, s) can be saved. Calculating the standard deviation in this way is
more efficient than using Definition 3, since this latter requires performing two steps. The above lemmas are180

also interesting as they show the relationship between average, standard deviation and support for periods
in a sequence.

To find rare periodic patterns in a sequence, a simple solution is to discover all patterns having a support
no greater than a maxSup treshold. However, if this constraint is only used with the standard deviation
of periods, many spurious patterns may be output. This is because there is no measure of correlation that185

items in an itemset are correlated. To address this issue, we integrate the bond measure to define the concept
of rare correlated periodic patterns [24, 29, 30, 33, 34].

Definition 4 (Disjunctive support). In a sequence s, the disjunctive support of an itemset X is the
number of transactions containing at least one item from X, denoted as dissup(X, s).

Definition 5 (Bond). In a sequence s, the bond of an itemset X is bond(X, s) = sup(X,s)
dissup(X,s) .190

For instance, dissup({a, e}, s1) = |{T1, T2, T3, T4, T5}| = 5 and bond({a, e}, s1) = 3
5 = 0.6.

Property 1 (Anti-monotonicity of the bond measure). Let there be two itemsets X ⊂ Y . Then,
bond(X) ≥ bond(Y ) [33].

Definition 6 (Rare correlated periodic pattern in a sequence). Let there be three user-specified
thresholds maxSup, maxStd, and minBond. An itemset X is a rare correlated periodic pattern in a195

sequence s if its sup(X, s) ≤ maxSup, stanDev(X, s) ≤ maxStd and bond(X, s) ≥ minBond.

For instance, if the user sets maxSup = 2, maxStd = 1 and minBond = 0.6, the itemset {b,e} is
a rare correlated periodic pattern in sequence s1, and sup({b, e}, s1) = 2, stanDev({b, e}, s1) = 0.47 and
bond({b, e}, s1) = 0.67.

Definition 6 can be used to find patterns in a single sequence. The next definition extends the concept200

of rare correlated periodic patterns for many sequences based on a novel sequence periodic ratio measure.

Definition 7 (Sequence periodic ratio). In a sequence database SDB, numSeq(X) denotes the number
of sequences where an itemset X is a rare correlated periodic pattern. Let |SDB| be the number of sequences
in SDB. The ratio ra(X) = numSeq(X)/|SDB| is called the sequence periodic ratio of X in SDB.

For instance, the database of Table 1 contains |SDB| = 4 sequences. The number of sequence where205

{b,e} is a rare correlated periodic pattern is numSeq({b, e}) = 3 (s1, s2, and s4). Hence, the sequence
periodic ratio of {b,e} is ra({b, e}) = 3/4 = 0.75.

Problem Statement. Consider a sequence database SDB and four user-specified thresholds: maximum
support threshold (maxSup), maximum bond threshold (maxBond), maximum standard deviation threshold
(maxStd) and minimum sequence periodic ratio threshold (minRa). An itemset X is a RCPPS in SDB if210

ra(X) ≥ minRa. The problem of mining RCPPs common to multiple sequences is to find all RCPPSs.
Discovering RCPPSs in a database is not easy because the maximum support constraint cannot be

used for search space pruning, as well as the standard deviation of periods because it is neither monotonic
nor anti-monotonic. Hence, to be able to prune the search space, an upper-bound on the ra measure is
introduced.215

Definition 8 (upBondRa). Given a user-specified threshold minBond, an itemset X is a candidate in
a sequence s if bond(X, s) ≥ minBond. The number of sequences where an itemset X is a candidate
in a sequence database SDB is denoted as numCand(X). The upBondRa of X in SDB is defined as
upBondRa(X) = numCand(X)/|SDB|.

Property 2. For two itemsets X ⊂ X ′, (1) upBondRa(X) ≥ ra(X) and (2) upBondRa(X) ≥ upBondRa(X ′).220

Proof is ommitted due to space limitation.
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4. The MRCPPS Algorithm

This section presents an algorithm named MRCPPS (Mining Rare Correlated Periodic Patterns common
to multiple Sequences) to efficiently enumerate all RCPPS. MRCPPS applies a depth-first search to explore
the search space of itemsets. Initially, it considers patterns each having a single item. Then, it recursively225

appends an item to each itemset to generate larger itemsets. To avoid generating the same itemset more than
once, items are appended to itemsets by following a total order � on I. Any total order can be used such as
the lexicographical order. The search space of itemsets contains up to 2|I|−1 itemsets (excluding the empty
set). To reduce the search space and find RCPPS efficiently, MRCPPS relies on the upBondRa measure,
which is an upper-bound on the ra measure, and satisfies the downward closure property (Property 2).230

Moreover, a key problem to design an efficient algorithm is how to calculate all the measures required to
evaluate a pattern without scanning the database numerous times. For this purpose, a novel data structure
called RCPPS-list is designed. A RCPPS-list is created for each itemset X considered by MRCPPS. The
RCPPS-list stores information about an itemset X using three fields: (1) SIDlist: is the list of identifiers
of sequences containing X. (2) list-conTIDlist: contains the list of identifiers of transactions where X235

occurs (conTIDlist) for each sequence in SIDlist. (3) list-disTIDlist: is the list of identifiers of transactions
containing at least one item from X (disTIDlist) for each sequence in SIDlist. For instance, the RCPPS-list
of the itemset {b, e} is: SIDlist : [1, 2, 4], list-conTIDlist : {[2, 4], [2, 4], [1, 4]}, list-disTIDlist : { [1, 2,
4], [2, 4, 5], [1, 2, 4]}. Using the information stored in an RCPPS-list, MRCPPS can quickly compute the
support of a pattern in a sequence (it is the size of the conTIDlist corresponding to the sequence ID), its240

bond (it is the size of its conTIDlist divided by the size of its disTIDlist, for that sequence ID), and stanDev
(it can be calculated from the conTIDlist corresponding to the sequence ID). For example, the RCPPS-list
of the itemset {b, e} indicates that this latter appears in sequence 1, 2, and 4, and thus that it has a support
of 3. The conTIDlist and disTIDlist of itemset {b, e} for sequence 1 are [2, 4] and [1, 2, 4], respectively.
Thus, the bond of {b, e} in sequence 1 is 2 / 3. After calculating the support, bond and stanDev measures of245

an itemset, its upBondRa and ra values can be quickly calculated to check if the itemset should be output
as a RCPPS and if it is should be used to generate larger patterns (according to Property 2). Moreover, as
it will be explained, the RCPPS-list of any itemset containing more than one item can be obtained without
scanning the database by performing intersections of the SIDlists and conTIDlists of two of its subsets and
the union of their disTIDlists.250

The proposed MRCPPS (Algorithm 1) takes as input a sequence database and the user-defined maxSup,
maxStd, minBond and minRa thresholds. MRCPPS outputs all the RCPPS. It first scans the database to
create the RCPPS-list of each item. Then, MRCPPS identifies the set I∗ of all items having a upBondRa
value that is no less than minRa (other items are ignored since they cannot be part of a RCPPS by
Property 2). The upBondRa values of items are then used to establish a total order � on items, which255

is the ascending order of upBondRa values. Finally, the depth-first search exploration of itemsets starts
by calling the recursive Search procedure with the empty itemset ∅, the set of single items I∗, maxSup,
maxStd, minBond and minRa.

The Search procedure is presented in Algorithm 2. It has the following parameters: (1) an itemset P ,
(2) extensions of the form Pz obtained by adding an item z to P , and where upBondRa(Pz) ≥ minRa, (3)260

the sequence database SDB (4) maxSup, (5) maxStd, (6) minBond and (7) minRa. When the procedure
is initially called, P = ∅ and extensions of P are single items (ExtensionsOfP = I). The procedure iterates
over each extension Px of P (line 1 to 15). For an extension, the procedure calculates numSeq(Px) and
ra(Px) using the RCPPS-list of Px (line 2 to 3). If ra(Px) ≥ minRa, then Px is a RCPPS and it is output
(line 4). Note that if the upBondRa value of Px is no less than minRa, the extensions of Px should be265

explored (no matter if Px is a RCPPS or not). This is performed by merging Px with all extensions Py of
P such that y � x to form extensions of the form Pxy containing |Px|+ 1 items (line 7). The RCPPS-list
of Pxy is then constructed by calling the Construct procedure using the RCPPS-list of Px and Py (line
8). An extension Pxy is then added to the set of extensions to be considered by the depth-first search if
the upBondRa value of Pxy is no less than minRa (line 11 to 13). This has for effect of ignoring some270

extensions from the search space that cannot be RCPPS. This search space reduction strategy can be done
because the upBondRa measure is anti-monotonic (Property 2). Hence, any extensions of a non RCPPS is
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Algorithm 1: The MRCPPS algorithm

input : SDB: a sequence database,
maxSup, maxStd, minBond, minRa: the user-specified threshods.

output: the set of RCPPS

1 Scan SDB to calculate the RCPPS-lists of all items in I;
2 I∗ ← ∅;
3 foreach item i ∈ I do
4 numCand(i)← |{s|bond(i, s) ≥ minBond ∧ s ∈ SDB}|;
5 upBondRa(i)← numCand(i)/|SDB|;
6 if upBondRa(i) 6= 0 ∧ upBondRa(i) ≥ minRa then I∗ ← I∗ ∪ {i};
7 end
8 Sort I∗ by the order � of ascending upBondRa values;
9 Search (∅, I∗, SDB, minSup, maxStd, minBond, minRa);

safely eliminated from the search space. Thereafter, the Search procedure is called with Pxy to calculate
its ra and explore its extensions(s) using the depth-first search (line 16).

Algorithm 2: The Search procedure

input : P : an itemset, ExtensionsOfP : a set of extensions of P , SDB: the sequence database
maxSup, maxStd, minBond, minRa: the user-specified threshods.

output: the set of RCPPS

1 foreach itemset Px ∈ ExtensionsOfP do
2 numSeq(Px)← |{s|sup(Px, s) ≤ maxSup ∧ stanDev(Px, s) ≤ maxStd ∧ bond(Px, s) ≥

minBond ∧ s ∈ SDB}|;
3 ra(Px)← numSeq(Px)/|SDB|;
4 if ra(Px) 6= 0 ∧ ra(Px) ≥ minRa then output Px;
5 ExtensionsOfPx← ∅;
6 foreach itemset Py ∈ ExtensionsOfP such that y � x do
7 Pxy ← Px ∪ Py;
8 Pxy.RCPPS-list← Construct(Px.RCPPS-list, Py.RCPPS-list);
9 numCand(Pxy)← |{s|bond(Pxy, s) ≥ minBond ∧ s ∈ SDB}|;

10 upBondRa(Pxy)← numCand(Pxy)/|SDB|;
11 if upBondRa(Pxy) 6= 0 ∧ upBondRa(Pxy) ≥ minRa then
12 ExtensionsOfPx← ExtensionsOfPx ∪ Pxy;

13 end

14 end

15 end
16 Search (Px, ExtensionsOfPx, SDB, maxSup, maxStd, minBond, minRa);

The Construct procedure takes as parameters the RCPPS-list listPx and listPy of some itemsets Px275

and Py, and it returns the RCPPS-list of the itemset Pxy. The procedure initializes an empty RCPPS-list
listPxy for Pxy (line 1). Then, a loop iterates over each sequence that appears in both SIDlist of Px
and Py. For each such sequence, let i, j be the index of SIDlist of Px and Py that respectively represent
the same sequence. Those indexes are used to retrieve the list-conTIDlist and list-disTIDlist of Px and
Py, respectively. Then, the list-conTIDlist of Pxy can be obtained by intersecting list-conTIDlist(i)280

and list-conTIDlist(j). And the list-disTIDlist of Pxy can be obtained by joining list-disTIDlist(i) and
list-disTIDlist(j). Then procedure returns the RCPPS-list of Pxy, which is obtained without scanning the
database.
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Algorithm 3: The Construct procedure

input : listPx: the RCPPS-list of Px, listPy: the RCPPS-list of Py.
output: the RCPPS-list of Pxy

1 listPxy ← ∅;
2 foreach i, j where listPx.SIDlist(i) = listPy.SIDlist(j) do
3 conTIDlist← listPx.list-conTIDlist(i) ∩ listPy.list-conTIDlist(j);
4 if conTIDlist 6= ∅ then
5 disTIDlist← listPx.list-disTIDlist(i) ∪ listPy.list-disTIDlist(j);
6 listPxy.SIDlist← listPxy.SIDlist ∪ listPx.SIDlist(i);
7 listPxy.list-conTIDlist← listPxy.list-conTIDlist ∪ conTIDlist;
8 listPxy.list-disTIDlist← listPxy.list-disTIDlist ∪ disTIDlist;

9 end

10 end
11 return listPxy ;

4.1. A Detailed Example

A detailed example is provided to illustrate how the algorithm is applied. Consider that the MRCPPS285

algorithm is applied with minSup = 2, maxStd = 1, minBond = 0.6 and minRa = 0.6, on the example
database of Table 1. The main procedure (Algorithm 1) is called, and the algorithm starts by processing
single items. Consider the item {b}. MRCPPS reads the database and finds that the RCPPS-list of {b}
contains: (1) SIDlist: [1, 2, 3, 4], (2) list-conTIDlist: {[2, 4], [2, 4, 5], [1, 2, 5], [1, 2, 4]} and (3)
list-disTIDlist: {[2, 4], [2, 4, 5], [1, 2, 5], [1, 2, 4]}. Moreover, the upBondRa value of {b} is 1.0. Thus,290

extensions of {b} will be considered. Other items are treated in a similar way and it is found that extensions
of items {a}, {c}, {d} and {e} should also be considered. The RCPPS-list of these items are built, and the
Search procedure (Algorithm 2) is called to find RCPPS. Since the ra of {b} is 0.25, {b} is not a RCPPS.
Then, extensions of {b} need to be explored. Consider the extension of {b} with {e}, that is {b, e}. The
Construct procedure (Algorithm 3) is applied on the RCPPS-list of {b} and {e} to generate the RCPPS-list295

of {b, e}. For this, the sequences where {b} and {e} are both periodic and have a upBondRa value no less
than minRa are found. The RCPPS-list of {e} is: (1) SIDlist: [1, 2, 4], (2) list-conTIDlist: {[1, 2, 4],
[2, 4], [1, 4]}, (3) list-disTIDlist: {[1, 2, 4], [2, 4], [1, 4]}. Thus, the RCPPS-list of {b, e} is: (1) SIDlist:
[1, 2, 4], (2) list-conTIDlist: {[2, 4], [2, 4], [1, 4]}, (3) list-disTIDlist: {[1, 2, 4], [2, 4, 5], [1, 2, 4]}. The
RCPPS-list of {b, e} is returned by the Search procedure. The upBondRa value of {b, e} is 0.75. Thus, the300

Search procedure is next called to explore extensions of {b, e}. It is found that the ra of {b, e} is 0.75. Thus
{b, e} is a RCPPS and it is output. The same process is repeated for other itemsets by recursively calling
the Search procedure until all RCPPSs are found. Because the algorithm can explore the search space of all
itemsets, and it only eliminates itemsets using Property 2, no RCPPS can be missed, and the algorithm is
complete.305

5. Experimental Evaluation

Two algorithms named PHUSPM [14] and MPFPS [15] were proposed to mine periodic frequent patterns
in a sequence database. However, they are not designed for mining rare correlated patterns. Hence, the
performance of these algorithms cannot be compared with the proposed MRCPPS algorithm. To evaluate
the performance of MRCPPS, this section compares its behavior for several parameter values, including310

with a baseline version of MRCPPS that finds all rare patterns. MRCPPS is implemented in Java, and it
was run on a Windows 10 computer equipped with a 3.60 GHz Xeon E3 processor with 64 GB of RAM.
Three benchmark datasets (FIFA, Bible and Leviathan) were used in the experiments, obtained from the
SPMF data mining library [35]. The first one is click-stream data from a website, while the two latter are
sequences of words from books. Since the number of items per transaction in these databases is always one,315
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it was decided to group items from consecutive transactions in a same transaction (by three items for FIFA
and Bible, and ten for Leviathan). This allows to evaluate the algorithm’s performance on sequences where
transactions contain multiple items. Let |SDB|, |I|, |T |, Smin, Smax, Savg be the number of sequences,
distinct items, item count per transaction, min, max and average transaction count per sequence. The
characteristics of the datasets are presented in Table 2. The source code of MRCPPS can be obtained from320

http://www.philippe-fournier-viger.com/spmf/.

Table 2: Characteristics of the datasets
Dataset |SDB| |I| |T | Smin Smax Savg

FIFA 20,450 2,990 3 3 34 12.4
Bible 36,369 13,905 3 3 34 7.5

Leviathan 5,834 9,025 10 1 10 3.8

MRCPPS provides four parameters: maxSup, maxStd, minBond and minRa. The first one is used to
define what is a rare pattern in terms of frequency. This parameter is set to a low value in the experiments
to find rare patterns (maxSup = 5). The second and fourth parameters are used to select periodic patterns,
while the third one is used to identify correlated patterns. In the special case where maxStd is set to ∞325

and minBond and minRa are set to 0, the algorithm finds all rare patterns. In the following, this setting
is used as baseline, and is denoted as baseline(0, 0, 100). The baseline is compared with other parameter
settings to assess the influence of the minRa, minBond and maxStd parameters on the performance of
the algorithm and number of patterns found. In the following MRCPPS(a, b, c) denotes MRCPPS with
minRa = a, minBond = b, maxStd = c and maxSup = 5.330

5.1. Influence of minBond

The minBond parameter was first varied to assess its impact on performance. Figure 1 depicts the
runtime and number of patterns found for different minBond values. For each value x of minBond, three
versions of MRCPSS are compared with the baseline. MRCPPS(0.1%, x, 100) means to mine rare pat-
terns common to multiple sequences, MRCPPS(0, x, 1) means to mine rare correlated patterns, while335

MRCPPS(0.1%, x, 1) refers to mining RCPPSs.
In general, it is observed that mining RCPPS is much faster than mining all rare patterns using the

baseline algorithm. This is what we expected since the algorithm uses the upBondRa upper-bound for
pruning and reducing the search space. Since upBondRa is calculated using the bond value of each sequence,
the runtime and number of patterns decrease or stay the same as minBond is increased. This can be clearly340

observed in most charts of Figure 1. However, for the FIFA and Bible datasets, the runtime does not
change much as minBond is increased. This is reasonable because the more items a pattern contains, the
smaller the bond usually is (see Definition 5). Thus, the bond measure is more effective to prune large
patterns than smaller patterns. Hence, since the maximum item count per transaction in these two datasets
is three, the minBond threshold does not have a strong influence on the number of patterns found. The345

bottommost charts of Figure 1 show that as minBond is increased, the runtime and the number of patterns
greatly decrease. It is reasonable that the minBond threshold has this effect on the Leviathan dataset since
itemsets contain up to ten items. Hence, there are many opportunities to generate large patterns with low
bond in the Leviathan dataset. Note that in Fig. 1, the symbol k denotes thousands and the symbol m
denotes millions.350

5.2. Influence of minRa

Next, the minRa threshold was varied to evaluate how it influences performance. In Figure 2, the
pattern count, and peak memory usage of the algorithm is reported for different minRa values. Note that
for the three subfigures on the left, the charts are enlarged to better show differences for high minRa values.
Moroever, the symbol x in Figure 2 represents the variable that is varied (minRa).355

Two observations are drawn from these results: (i) Decreasing minRa tends to increase the number of
patterns found and memory usage. The reason is that as minRa is decreased, it becomes more difficult
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Figure 1: Runtimes and number of patterns for different minBond values.

to reduce the search space using upBondRa, since more patterns may have ra values that are no less
than upBondRa. Thus, the algorithm may consider more patterns in the search space, which increases
the runtime. Although detailed results for the runtime are not shown for this experiment due to space360

limitation, this behavior can be observed in Figure 1. (ii) The minRa threshold has a greater effect on
memory consumption for the datasets that have many items and few transactions (Bible and Leviathan).
When minRa is increased from 0 to 0.05%, memory consumption is reduced to one eighth of the initial
value. This is reasonable because the item count per transaction is fixed, and many items do not appear in
sequences having few transactions. Hence, using the minRa constraint, memory can be saved by avoiding365

considering itemsets that do not appear in multiple sequences.

5.3. Influence of maxStd

Then, the maxStd parameter was varied to evaluate its influence. Table 3 shows the number of patterns
found for different maxStd values on the FIFA and Bible datasets (results are not shown for Leviathan
but a similar trend is observed). It can be observed that increasing maxStd often results in finding more370

patterns. The reason is that increasing maxStd increases the range of stanDev values that are allowed for
a pattern to be considered as periodic in a sequence. It is further observed that as maxStd is decreased
from 2 to 0 in the Table, the number of patterns decreases in some cases to about one tenth of the initial
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Figure 2: Number of patterns and peak memory usage for different minRa values.

number. Moreover, if the minBond and minRa constraints are both used at the same time, the number of
patterns can be one thousand times smaller than the initial number. It shows that these parameters can be375

used together to achieve better performance and filter many non correlated and non periodic patterns.

6. Conclusion

This article defined a novel problem of mining rare correlated periodic patterns that appear in multi-
ple sequences. The constraints of maximum support, minimum bond, maximum standard deviation and
minimum sequence periodic ratio have been used, and properties of these measures have been studied. To380

efficiently enumerate all RCPPS using these measures, an efficient algorithm named RMCPPS was pro-
posed, based on a novel RCPPS-list structure and a novel upBondRa upper-bound to reduce the search
space. Experiments on several real databases have shown that the designed algorithm is efficient and can
filter many non periodic or non correlated patterns.

The research presented in this paper sets forward several possibilities for future work. First, one could385

design more efficient algorithms in terms of runtime and memory consumption. Second, one could consider
adapting the proposed model for discovering other types of patterns such as periodic sequential rules in
sequences. Third, methods could be developed to automatically tune parameters for a given dataset.
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Table 3: Number of patterns found by MRCPPS for different maxStd values on FIFA and Bible.

datasets
Algorithm

# of patterns maxStd
0 0.5 1 1.5 2

FIFA

baseline(0, 0, x) 21,639 174,770 192,049 207,915 220,463
MRCPPS(0, 0.5, x) 17,935 37,328 52,628 64,845 74,498
MRCPPS(0.1%, 0, x) 490 1,347 2,081 2,670 3,164
MRCPPS(0.1%, 0.5, x) 488 1,321 2,050 2,622 3,100

Bible

baseline(0, 0, x) 52,579 122,290 180,379 227,503 263,774
MRCPPS(0, 0.5, x) 47,126 108,166 158,224 197,791 226,833
MRCPPS(0.1%, 0, x) 252 832 1,503 2,088 2,586
MRCPPS(0.1%, 0.5, x) 233 766 1,377 1,911 2,353
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