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Abstract. Frequent episode mining is a key data mining task, for an-
alyzing discrete sequences, used in many domains. The goal is to enu-
merate all subsequences of symbols or events that are appearing at least
some minimum number of times. In the last decades, several efficient
episode mining algorithms were designed. Nonetheless, a major issue is
that they often yield a huge number of frequent episodes, which is incon-
venient for users. As a solution, this paper presents an efficient algorithm
called MaxFEM (Maximal Frequent Episode Miner) to identify only the
maximal frequent episodes in a complex sequence. The key benefit is
that the number of frequent episodes presented to the user can be re-
duced by several times. The MaxFEM algorithm includes many strategies
to improve its performance. An experimental evaluation on benchmark
datasets confirms that MaxFEM has excellent performance.

Keywords: Pattern Mining · Frequent Episodes · Maximal Episodes.

1 Introduction

Analyzing data to discover frequent patterns is a popular research topic in data
mining. Over the last decades, various algorithms have been designed to analyze
various types of data such as transactions, sequences, graphs and trees. Among
those data types, more and more attention is given to discrete sequences. A
discrete sequence is an ordered list of events or symbols and can be used to
encode varied data such as sequences of moves in a Chess game, sequences of
clicks on a website, sequences of alarms generated by a system [13], sequences
of nucleotides in a virus genome [14], and sequences of words in a novel [5].

To find interesting patterns in sequences, a large body of research has focused
on designing algorithms to extract frequent subsequences in discrete sequences.
These studies can be generally categorized as addressing one of two tasks: se-
quential pattern mining (SPM)[5, 15] and frequent episode mining (FEM) [13].

This is a preprint of the paper presenting the MaxFEM algorithm before it is submitted to
the MIWAI 2022 conference. The final version will appear in the proceeindgs of that
conference, published by Springer.
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The former task consists of finding patterns that are common to a set of discrete
sequences, while the latter aims at finding patterns in a very long sequence. Al-
gorithms for these problems are quite different and both problems have many
real-life applications. In this paper, the focus is on FEM.

The input to FEM is a discrete sequence, a window size maxWindow and a
threshold called the minimum support (minsup). The output is all the frequent
episodes, that is the subsequences that appears at least minsup times in the
input sequence. Finding frequent episodes is useful but very difficult computa-
tionally, especially for long sequences, low minsup values and large maxWindow
values. For this reason, several efficient algorithms have been proposed. The
first two algorithms are MINEPI and WINEPI [13]. WINEPI can identify serial
episodes (where events are all sequentially ordered), parallel episodes (where all
events are unordered) and composite episodes (where events are partially or-
dered). To find frequent episodes, WINEPI employs a breadth-first search and
utilizes a sliding-window model. WINEPI counts the occurrence frequency (also
called support) of an episode as the number of windows that contains an oc-
currence of the episode. As noted by Iwanuma et al. [9], a drawback of that
definition is that a same occurrence may be counted multiple times. To avoid
this problem, MINEPI was designed. It is a breadth-first search algorithm that
only counts the minimal occurrences of each episode [13]. Thereafter, another
occurrence counting function was proposed called the head frequency, which is
used by several recent FEM algorithms such as EMMA, MINEPI+[8], and TKE
[7] as it is more suitable for prediction [8]. EMMA and TKE rely on a depth-first
search in combination with a memory anchor technique to speed up the search,
and were shown to outperform several earlier algorithms such as MINEPI [13]
and MINEPI+ [8] by a large margin. Research on FEM is ongoing and new algo-
rithms and extensions are published regularly such as for discovering extended
episode types such as high utility episodes [6, 12] and online episodes [2].

Though frequent episodes can reveal useful information, a major issue is that
current FEM algorithms can generate huge result sets, sometimes containing
millions of frequent episodes, and that these episodes are often very similar to
each other. For instance, when analyzing the data of a customer in a store, a
frequent episode may indicate that the person bought milk, then bread, and
then some oranges. But all the subsequences of this pattern would generally be
also frequent such as the episode of buying milk followed by bread, the episode
of buying bread followed by oranges, or the episode of buying milk followed by
oranges. This is a major problem because all these patterns can be viewed as
redundant as they are included in the first episode, and combing through large
sets of episodes can be very time-consuming for users.

In recent years, some researchers have attempted to propose a solution to
this problem by designing algorithms to discover concise representations of fre-
quent episodes such as closed episodes [1, 11] and maximal episodes [3]. The aim
is to find a subset of all episodes that summarize them. But the majority of
these algorithms are only able to analyze simple sequences (without simultane-
ous events) [1, 3, 11]. This greatly simplifies the problem of mining episodes but
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makes these algorithms unusable for analyzing many real life event sequences
such as customer transactions (as customers may buy multiple products at the
same time). Thus, it is important to address the general problem of mining con-
cise representations of episodes in complex sequences (with simultaneous events).

To address this issue, this paper proposes a novel algorithm called MaxFEM
(Maximal Frequent Episode Miner) to mine maximal frequent episodes in com-
plex event sequences. A maximal frequent episode is a frequent episode that
is not included in larger frequent episodes. The key benefit of mining maximal
episodes is that the number of frequent episodes presented to the user can be
greatly reduced, as it will be shown in the experimental evaluation. To our best
knowledge, MaxFEM is the first algorithm to discover maximal episodes in com-
plex sequences. To efficiently discover the maximal frequent episodes, MaxFEM
includes three strategies to improve its performance, named Efficient Filtering
of Non-maximal episodes (EFE), Skip Extension checking (SEC), and Tempo-
ral pruning (TP). An experimental evaluation on several benchmark datasets
confirms that MaxFEM has excellent performance.

The structure of the rest of this paper is the following. Section 2 describes
the problem of FEM and the novel problem of maximal FEM. Then, Section 3
presents the MaxFEM algorithm. Section 4 reports results for the experimental
evaluation. Lastly, Section 5 draws a conclusion and list several opportunities
for future work.

2 Problem Definition

This section gives a formal definition of the problem of frequent episode mining,
discusses its properties, and then describes the proposed problem of maximal
frequent episode mining.

The input data in frequent episode mining is a discrete sequence [8, 13].
Assume that there is a finite set E = {i1, i2, . . . , im} of events (also called items
or symbols). A subset X ⊆ E is said to be an event set. A discrete sequence, also
called a complex event sequence, is defined as a finite ordered list S = ⟨(SEt1 , t1),
(SEt2 , t2), . . . , (SEtn , tn)⟩ of pairs of the form (SEti , ti) where SEti ∈ E is an
event set and ti is an integer representing a timestamp. A sequence is ordered
by time, that is for any integers 1 ≤ i < j ≤ n, the relationship ti < tj holds. An
event set SEti of a sequence contains events that are assumed to have occurred
at the same time, and for this reason it is called a simultaneous event set. In
the case, where a complex event sequence contains event sets each only having
one event, it is said to be a simple event sequence. It is to be noted that a same
event can appear multiple times in a sequence (in different event sets). Besides,
although the definition of sequence includes timestamps, it can also be used to
model sequences that do not have timestamps such as sequence of words by
assigning contiguous integers as timestamps (e.g. 1, 2, 3, 4, 5).

To illustrate these definitions, a complex event sequence is presented in Fig. 1,
which has eight event sets and timestamps ranging from 1 to 11. This sequence is
formally represented as S = ⟨({a, c}, 1), ({a}, 2), ({a, b}, 3), ({a}, 6), ({a, b}, 7),
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({c}, 8), ({b}, 9), ({d}, 11)⟩, and will be used as running example. The interpre-
tation of this sequence is that events a and c occurred at time 1, were followed
by event a at time 2, and then by a and b at time 3. Then, the event a was
observed at time 6, the events a and b at time 7, the event c at time 8, the event
b at time 9, and lastly event d at time 11. As shown in this example, timestamps
are not required to be contiguous. This type of sequences can encode various
data such as sequence of events from a complex system, network data [10], cloud
data [1], malicious attacks [16], and stock data [12].

event sets

timestamps

{a, c}

1

{a}

2

{a, b}

3

{a}

6

{a, b}

7

{c}

8

{b}

9

{d}

11

Fig. 1: A complex event sequences with eight event sets

The problem of frequent episode mining is to find all frequent episodes in a
complex event sequence. A frequent episode is an episode that has a high support
(has many occurrences in the sequence). There are three types of episodes [13].
A composite episode α is an ordered list of simultaneous event sets. A composite
episode α having p event sets is represented as α = ⟨X1, X2, . . . , Xp⟩, where
Xi ⊆ E, and Xi is said to appear before Xj for any integers 1 ≤ i < j ≤ p. The
size of α is defined as size(α) =

⋃
i∈[1,p] |Xi|. A parallel episode is a composite

episode that contains a single event set. A serial episode is a composite episode
where each event set contains one event. Several FEM mining algorithms are
only able to handle the special case of serial episodes, while others can find all
composite episodes [13, 8].

To find frequent episodes, the concept of support is crucial (how to count
the occurrences in a sequence). Multiple support functions have been proposed,
which have different advantages and limitations. In this study, the head frequency
support function [9] is used, which has been used in several algorithms such
as MINEPI+ [8], EMMA [8] and TKE [7]. The concept of occurrence is first
presented and then the head support function.

Definition 1 (Occurrence). An occurrence of an episode α = ⟨X1, X2, . . . , Xp⟩
in a complex event sequence S = ⟨(SEt1 , t1), (SEt2 , t2), . . . , (SEtn , tn)⟩ is a time
interval [ts, te] that satisfies X1 ⊆ SEz1 , X2 ⊆ SEz2 , . . . , Xp ⊆ SEzw for some
integers ts = z1 < z2 < . . . < zw = te. In an occurrence [ts, te], ts is said to be
the start point, while te is the end point. The length of an occurrence [ts, te] is
defined as ts − te. The notation occSet(α) refers to the set of all occurrences of
α that have a length that is smaller than some maximum length winlen set by
the user.

As example, if winlen = 3, the composite episode α = ⟨{a}, {a, b}}⟩ has an
occurrence set with three occurrences, i.e. occSet(α) = {[t1, t3], [t2, t3], [t6, t7]}.
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Definition 2 (Head support). Let there be a composite sequence S and an
episode α. The support of α in S is defined as sup(α) = |{ts|[ts, te] ∈ occSet(α)}|,
that is the number of distinct start points in the occurrence set of α [8].

Continuing the previous example, the support of α = ⟨{a}, {a, b}⟩ is sup(α) =
3 because there are three different start points in occSet(α), namely t1, t2, and
t6.

Based on the above definitions, the problem of mining frequent episodes is
defined as:

Definition 3 (Mining frequent episodes). Given, a complex event sequence
S, a user-defined threshold minsup > 0 and a user-specified window length
winlen > 0, the problem of mining frequent episodes is to enumerate all fre-
quent episodes appearing in S. An episode α is frequent if sup(α) ≥ minsup [8].

For instance, for minsup = 2 and winlen = 3, there are seven frequent
episodes in the sequence depicted in Fig. 1. Those are ⟨{a}⟩, ⟨{b}⟩, ⟨{c}⟩ ⟨{a}, {b}⟩,
⟨{a, b}⟩, ⟨{a}, {a}⟩, and ⟨{a}, {a, b}⟩. The support of these episodes are respec-
tively 5, 3, 2, 2, 2, 3, and 2.

Several algorithms were proposed to solve the problem of frequent episode
mining. To find the frequent episodes without considering all possible episodes,
these algorithms use a powerful search space pruning property of the support,
called the downward closure property, which indicates that the support of an
episode cannot be greater than that of its prefix episodes [8]. Formally, this
means that the relationship sup(α) ≤ sup(β) holds for any episode β = ⟨X1,
X2, . . . , Xi⟩ and episode α = ⟨X1, X2, . . . , Xp⟩ where i < p.

A major problem with current algorithms for FEM is that too many frequent
episodes may be discovered. To address this issue, this paper proposes to discover
only the maximal frequent episodes. This problem is defined as follows.

Definition 4 (Mining maximal frequent episodes in a complex event
sequence). Given, a complex event sequence S, a user-defined threshold minsup >
0 and a user-specified window length winlen > 0, the problem of mining maxi-
mal frequent episodes is to enumerate all frequent episodes that are not strictly
included in another frequent episode [8]. An episode α = ⟨Y1, Y2, . . . , Yi⟩ is
strictly included in an episode β = ⟨X1, X2, . . . , Xp⟩ if and only if Y1 ⊆ Xk1 ,
Y2 ⊆ Xk2 . . . Yi ⊆ Xki for some integers 1 ≤ k1 < k2 < . . . < ki ≤ p. This
relation is denoted as α ⊑ β.

For instance, in the same example, there are only two maximal frequent
episodes that are ⟨{c}⟩ and ⟨{a}, {a, b}⟩. Thus, five non-maximal frequent episodes
are omitted, which can be viewed as redundant, as they are strictly included in
the maximal episodes.

A naive approach to solve the problem of mining maximal frequent episodes
would be to first discover all frequent episodes using a traditional algorithm
such as EMMA [8] or TKE [7], and then to perform a post-processing step to
compare frequent episodes to filter episodes that are non-maximal. This approach
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would work. However, it is inefficient because it requires keeping in memory
all frequent episodes, and there can be a huge number. As it will be shown
in the experimental evaluation, the number of maximal episodes can be much
smaller than the number of frequent episodes. Hence, it is desirable to design
an algorithm that does not require maintaining all frequent episodes in memory.
The next section presents the MaxFEM algorithm.

3 The MaxFEM algorithm

The MaxFEM algorithm is the first algorithm for mining maximal frequent
episodes in a complex event sequence (the general case). Also, differently from
prior work [3], MaxFEM relies on the head frequency to count the support of
episodes [7, 8]. To explore the search space of frequent episodes, MaxFEM per-
forms a depth-first search using the basic search procedure of EMMA [8]. This
procedure was selected as basis for MaxFEM because it is efficient for exploring
the search space of frequent episodes with the head frequency. The procedure
consists of first discovering frequent single events, then to combine these events to
find frequent parallel episodes, and finally, to join the frequent parallel episodes
to obtain frequent composite episodes. However, this procedure is not designed
for identifying the maximal frequent episodes.

To find only the maximal frequent episodes and avoid the naive solution of
filtering non-maximal episodes by post-processing, MaxFEM adopts the follow-
ing approach. MaxFEM is equipped with a data structure called W for storing
at any moment the current maximal frequent episodes. Then, MaxFEM starts
searching for episodes. When MaxFEM finds a new frequent composite episode
X, MaxFEM compares X with the episodes already in W . If X is strictly in-
cluded in an episode already in W , then X is ignored as it is not maximal. In
the other case where X is maximal, any episode in W that is strictly included
in X is removed from W . When the algorithm terminates, this ensure obtaining
the maximal frequent episodes.

The next paragraphs present each step of the MaxFEM algorithm. Then,
three additional optimizations are introduced to obtain a more efficient algo-
rithm.

The MaxFEM algorithm takes as input a complex event sequence S, and
the minsup and winlen parameters. MaxFEM outputs the maximal frequent
episodes. The pseudocode is shown in Algorithm 1. The key steps are the fol-
lowing:

Step 1. Finding the frequent events. MaxFEM reads the input sequence
S to compute the support of each single event, to then identify the set E′ of all
frequent events.

For instance, consider the input sequence S = ⟨({a, c}, 1), ({a}, 2), ({a, b}, 3),
({a}, 6), ({a, b}, 7), ({c}, 8), ({b}, 9), ({d}, 11)⟩ depicted in Fig. 1, minsup = 2
and winlen = 3. The frequent events are a, b and c, since they have a support of
5, 3 and 2, respectively, which is no less than minsup. The event d is infrequent
because it has a support of 1 < minsup.
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Algorithm 1: The MaxFEM algorithm

input : S: an input sequence, minsup: a user-specified threshold, winlen: the
window length

output: the maximal frequent episodes

1 Scan S to calculate sup(e) for each event e ∈ E;
2 E′ ← {e|e ∈ E ∧ sup(e) ≥ minsup};
3 Thereafter, ignore or remove each event e ̸∈ E′ from S;
4 Read S to build the location list of each frequent event e ∈ E′;
5 PEpisodes← E′;
6 foreach parallel episode ep ∈ PEpisodes such that sup(ep) ≥ minup do
7 foreach event e ∈ E′ such that sup(e) ≥ minup do
8 newE ← parallelExtension(ep, e);// and build newE’s location

list

9 if sup(newE) ≥ minsup then
10 PEpisodes← PEpisodes ∪ {newE};
11 end

12 end

13 end
14 W ← PEpisodes;
15 Re-encode the sequence S into a sequence S′ using the parallel episodes;
16 foreach composite episode ep ∈W such that sup(ep) ≥ minup do
17 foreach event e ∈ PEpisodes such that sup(e) ≥ minup do
18 newE ← sExtension(ep, e);// and build newE’s bound list

19 if sup(newE) ≥ minsup and newE has no superset in W then
20 W ←W ∪ {newE};
21 Remove all subsets of newE that are in W ;

22 end

23 end

24 end
25 Return W ;

Thereafter, infrequent events will be ignored as they cannot appear in fre-
quent episodes.

Step 2. Build the location-lists of frequent events. Next, MaxFEM
reads the input sequence S again to create a vertical structure, named location
list [8] for each frequent event. A formal definition of this structure is given:

Definition 5 (Location list). Let there be an input sequence S = ⟨(SEt1 , t1),
(SEt2 , t2), . . . , (SEtn , tn)⟩. Furthermore, assume that events from each event set
in S are sorted by a total order ≺ on events. This order can be any order such
as the lexicographical order (a ≺ b ≺ c ≺ d). If an event e is included in the
i-th event set SEti of the input sequence, then e is said to appear at position∑

w=1,...,i−1 |SEtw | + |{y|y ∈ SEti ∧ y ≺ e}|. For an event e, its location list
in the sequence S is the list of its timestamps and is denoted as locList(e). An
interesting property is that the support of an event e can be obtained from its
location list as sup(e) = |locList(e)|.
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Continuing the running example, the location lists of frequent events a, b and
c are locList(a) = {1, 2, 3, 6, 7}, locList(b) = {3, 7, 9} and locList(c) = {1, 8},
respectively.

Step 3. Finding the frequent parallel episodes. In the third step, fre-
quent episodes are recursively extended to find all frequent parallel episodes,
as in EMMA [8]. A set to store frequent parallel episodes, called PEpisodes,
is created and initialized as PEpisodes = E′. Then, MaxFEM tries to extend
each frequent episode ep ∈ PEpisodes by combining it with each frequent event
e ∈ E′|e ̸∈ ep∧∀f ∈ ep, f ≺ e to obtain a larger parallel episode newE = ep∪{e}.
The resulting episode newE is said to be a parallel extension of ep with event
e. To determine the support of newE, its location list is built by intersecting
the location lists of e and ep. That is the location list of newE is created as
locList(newE) = locList(e) ∩ locList(ep). If the support |locList(newE)| is
equal or greater than minsup, newE is added to PEpisodes (with its location
list) because it is a frequent parallel episode. After recursively performing paral-
lel extensions of episodes in PEpisodes, this latter contains all frequent parallel
episodes. For instance, the episode ⟨{a}⟩ can be extended with the frequent
event c, to obtain the parallel episode ⟨{a, c}⟩. The location list of that episode
is loclist(⟨{a, c}⟩) = loclist(⟨{a}⟩)∩ loclist(⟨{c}⟩) = {1, 2, 3, 6, 7}∩{1, 8} = {1}.
Hence, the support of ⟨{a, c}⟩ is sup(⟨{a, c}⟩) = |loclist(⟨{a, c}⟩)| = 1 and this
parallel extension is infrequent. After repeating this process to generate all paral-
lel extensions, it is found that parallel frequent episodes are: ⟨{a}⟩, ⟨{b}⟩, ⟨{c}⟩,
and ⟨{a, b}⟩. Their support values are 5, 3, 2, 2, respectively.

Step 4. Using parallel episodes to re-encode the sequence. Next,
MaxFEM assigns a unique identifier to each parallel frequent episode. Then, the
algorithm transforms the input sequence S into a re-encoded sequence S′ by re-
placing events from S by parallel episodes. For the running example, MaxFEM
assigns #1, #2, #3 and #4 as identifiers for the episodes ⟨{a}⟩, ⟨{b}⟩, ⟨{c}⟩, and
⟨{a, b}⟩. Then, S is re-encoded as: S′ = ⟨({#1#3}, 1), ({#1}, 2), ({#1,#2,#4}, 3),
({#1}, 6), ({#1,#2,#4}, 7), ({#3}, 8), ({#2}, 9)⟩.

Step 4. Finding the maximal frequent composite episodes. There-
after, MaxFEM searches for frequent maximal composite episodes using the re-
encoded sequence S′. A data structure W is first initialized to store the maximal
frequent composite episodes. All parallel frequent episodes are added to W , as
they are currently considered to be maximal. Then, MaxFEM attempts to build
larger frequent composite episodes by recursively performing serial extensions of
episodes in W . A serial extension is the combination of an episode ep = ⟨SE1,
SE2, . . . , SEx⟩ ∈ W with a parallel episode pe ∈ PEpisodes to obtain a larger
composite episode sExtension(ep, pe) = ⟨SE1, SE2, . . . , SEx, pe⟩.

For each serial extension sExtension(ep, pe), MaxFEM creates its bound list
structure, which is defined as:

Definition 6 (Bound list). Let there be a re-encoded sequence S′ = ⟨(SEt1 , t1),
(SEt2 , t2), . . . , (SEtn , tn)⟩. The bound list of a parallel episode pe is defined as
boundList(pe) = {[t, t]|pe ⊆ SEt ∈ S′}. The bound list of the serial extension of
a composite episode ep with pe, is defined as: boundList(sExtension(ep, pe)) =
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{[u,w]| [u, v] ∈ boundList(ep) ∧[w,w] ∈ boundList(pe) ∧w − u < winlen
∧v < w}. The bound list of a composite episode ep allows deriving its support as
sup(ep) = |{ts|[ts, te] ∈ boundList(ep)}|.

MaxFEM combines each episode in W with each parallel episode appear-
ing in a same window winlen in S′ to create serial extensions. If an extension
sExtension(ep, pe) is frequent and not strictly included in an episode already
in W , then (1) it is added to W and (2) each episode ee ∈ W that is strictly in-
cluded in sExtension(ep, pe) is removed from W because it is not maximal. This
process ensures maintaining the current maximal frequent composite episodes in
W at any moment. When no more serial extensions can be done, W contains all
maximal frequent episodes and W is returned to the user.

As example, consider the serial extension of ⟨{a}⟩ with ⟨{a}⟩, which results in
f = ⟨{a}, {a}⟩. The bound list of f is boundList(f) = {[t1, t2], [t2, t3], [t6, t7]}.
Hence, sup(f) = |{t1, t2, t6}| = 3. Since this serial extension is frequent, it is
added to W and ⟨{a}⟩ is removed from W . This process is repeated for other se-
rial extensions. In the end, the set of maximal frequent episodes W is: ⟨{c}, {a}⟩,
⟨{a}, {c}⟩ and ⟨{a}, {a, c}⟩, with a support of 2, 2, and 3 respectively (the end
result).

Completeness. It can be seen that MaxFEM is a complete algorithm as it
relies on the search procedure of EMMA to explore the search space of frequent
episodes, and MaxFEM only eliminates non-maximal episodes during the final
step where composite episodes are generated (Step 4).

It can be tempting to also eliminate non-maximal episodes during the earlier
step of generating parallel episodes (Step 3). But if this would be done, the
algorithm would become incomplete. This is demonstrated by an example. If
the parallel episode ⟨{a}⟩ is eliminated early in Step 3 because it is strictly
included in the parallel episode ⟨{a, c}⟩, then the maximal episode ⟨{a}, {a, c}⟩
will not be generated in Step 4 and thus it would be missed in the final result.

Optimizations. MaxFEM applies three strategies to improve performance.
Strategy 1. Efficient Filtering of Non-maximal episodes (EFE). The first

strategy consists of using an appropriate data structure to implement W and
to optimize the two operations that are done using it: (1) searching for episodes
strictly included in an episode e (sub-episode checking) and (2) searching for
episodes in which e is strictly included (super-episode checking). Because these
checks are relatively costly, two ideas are used to reduce the number of checks.

First, W is implemented as a list of heaps W = {W1,W2, ...Wn} where
n is the size of the longest frequent episode discovered until now. In W , the
heap Wx (1 ≤ x ≤ n) stores the maximal episodes found until now of size
x. Then, to do super-episode (sub-episode) checking for an episode ep hav-
ing w events, MaxFEM only compares ep with episodes in Ww+1,Ww+2...Wn

(W1,W2...Ww−1). This is because an episode can only be strictly included (strictly
include) an episode if it has a larger (smaller) size.

Second, each event from the input sequence is encoded as a distinct integer.
Then, a hash value hash(ep) is calculated for each episode ep as the sum of
its events. For instance, if the events a, b, c are encoded as 1, 2, and 3, the
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hash value of the episode ⟨{a}, {a, c}⟩ is 1 + 1 + 3 = 5 Based on these hash
values, episodes stored in each heap of W are sorted by decreasing hash values.
This allows optimizing super-episode checking as follows. For a heap Wx and an
episode α, if hash(α) > hash(β) for any episode β ∈ Wx, then it is unnecessary
to check if α ⊏ β for β and all episodes after β in Wx. Similarly, for a heap
Wx and an episode α, if hash(β) > hash(α) for any episode β ∈ Wx, then it is
unnecessary to check β ⊏ α as well as all episodes after β in Wx when Wx is
traversed in reverse order.

Strategy 2. Skip Extension checking (SEC). This strategy is based on the
depth-first exploration of composite episodes. If a frequent episode ep is extended
by serial extension to form another frequent episode, then it is unnecessary to do
super-pattern and sub-pattern checking for ep as ep cannot be maximal. Thus,
ep is only considered to be added to W if it has no frequent serial extensions.

Strategy 3. Temporal pruning (TP). The third optimization aims at reduc-
ing the cost of creating bound lists. Creating the bound list of an extension
sExtension(ep, pe) requires to compares elements in the bound lists of ep and
pe one by one. If at any point the number of remaining elements is not enough
to satisfy minsup, the construction of the bound-list is stopped.

4 Experimental Evaluation

To assess the performance of the designed MaxFEM algorithm, a set of experi-
ments have been carried out. The runtime of MaxFEM was compared with the
EMMA [8] algorithm. EMMA is selected as baseline as MaxFEM relies on the
search procedure of EMMA, and they both use the head frequency measure for
counting episode occurrences, and they mine composite episodes for the general
case of a complex sequence. Also, EMMA is also faster than some recent algo-
rithms such as TKE [7]. All algorithms have been implemented in Java and the
experiments were run on a laptop with Windows 11 and a Intel Core i7-8565U
CPU @ 1.80 GHz and 16 GB of RAM. The memory usage of algorithms was
captured using the Java API. Datasets and source code of the algorithms are
available in the SPMF library (www.philippe-fournier-viger.com/spmf) [4].

Several datasets have been used and gave similar results but due to space
limitations results for only two datasets are shown, called Kosarak and Retail,
which are popular benchmark datasets for pattern mining and represent differ-
ent data types. Kosarak is click-stream dataset from a Hungarian news portal
containing 990,000 event sets, 41,270 distinct event types and an average event
set size of 8.1 items. Retail is transaction data from a Belgian retail store con-
taining 88,162 event sets, 16,470 distinct event types and an average event set
size of 10.3 items. The characteristics of the datasets are presented in Table 1.

Algorithms were run on each dataset with winlen ∈ {5, 10, 15} while minsup
was decreased until a clear performance trend was observed or algorithms would
fail to terminate due to a 300 seconds time limit set for experiments. Results
shown in Fig. 2 compares the runtime and number of patterns found by each
algorithm. It is observed that MaxFEM is always about 10% to 40% faster than

Preprin
t



MaxFEM: Maximum episode mining 11

Table 1: Characteristics of the datasets
Dataset Avg. Sequ. Len. #Events #Sequences Density(%)

Kosarak 8.1 41,270 990,000 0.02

Retail 10.3 16,470 88,162 0.06

EMMA. This is due to the three novel optimizations since EMMA and MaxFEM
uses the same basic search procedure.

It is also observed that the number of maximal episodes is much smaller
than all frequent episodes. For example, on Kosarak for minsup = 20, 000 and
winlen = 5, MaxFEM finds 694 maximal episodes, while EMMA finds 2,583
frequent episodes. Thus, it can be concluded that the performance of MaxFEM
is acceptable and maximal episodes provide a compact summary of all frequent
episodes. Results (not shown) on other tested datasets are similar.

0

20

40

60

80

100

120

140

Ti
m

e 
(s

)

minsup

Kosarak
EMMA
W5

EMMA
W10

EMMA
W15

MaxFEM
W5

MaxFEM
W10

MaxFEM
W15

0

500

1000

1500

2000

2500

3000

400000350000300000250000200000

P
at

te
rn

 c
o

u
n

t

minsup

0

20

40

60

80

100

120

250002000015000100001000

Ti
m

e 
(s

)

minsup

Retail

0

5000

10000

15000

20000

25000

30000

250002000015000100001000

P
at

te
rn

 c
o

u
n

t

minsup
350

Fruithut
Fig. 2: Comparison of runtime and pattern count

5 Conclusion

This paper has proposed a novel algorithm named MaxFEM for discovering
maximal episodes for the general case of a complex event sequence, and using
the head frequency function. MaxFEM includes three strategies to improve its
performance, named Efficient Filtering of Non-maximal episodes (EFE), Skip
Extension checking (SEC), and Temporal pruning (TP). An experimental eval-
uation on real datasets has shown that maximal episodes provides a compact
summary of all frequent episodes and that MaxFEM has a significant speed
advantage over the EMMA algorithm. In future work, an interesting plan is
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to extend MaxFEM for other frequency functions and sequences types and to
design a parallel and distributed version.

The source code of MaxFEM is available in the SPMF library [4], as well as a
version of MaxFEM for mining all frequent episodes called AFEM (All Frequent
Episode Miner).
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