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Abstract. Mining high utility itemsets (HUIs) is one of the most important re-
search topics in data mining because HUIs consider non-binary frequency val-
ues of items in transactions and different profit values for each item. However, 
setting appropriate minimum utility thresholds by trial and error is a tedious 
process for users. Thus, mining the top-k high utility itemsets (top-k HUIs) 
without setting a utility threshold is becoming an alternative to determining all 
of the HUIs. In this paper, we propose a novel algorithm, named TKU-CE 
(Top-K high Utility mining based on Cross-Entropy method), for mining top-k 
HUIs. The TKU-CE algorithm follows the roadmap of cross entropy and tack-
les top-k HUI mining using combinatorial optimization. The main idea of TKU-
CE is to generate the top-k HUIs by gradually updating the probabilities of 
itemsets with high utility values. Compared with the state-of-the-art algorithms, 
TKU-CE is not only easy to implement, but also saves computational costs in-
curred by additional data structures, threshold raising strategies, and pruning 
strategies. Extensive experimental results show that the TKU-CE algorithm is 
efficient, memory-saving, and can discover most actual top-k HUIs. 

Keywords: Data mining, Heuristic method, Cross-entropy, Combinatorial op-
timization, Top-k high utility itemset. 

1 Introduction 

High utility itemset (HUI) mining [7] is an extension of frequent itemset (FI) mining 
[1] used to discover high-profit itemsets by considering both the quantity and value of 
a single item. However, it is difficult for non-expert users to set an appropriate 
threshold. Consequently, top-k high utility itemset (top-k HUI) mining [13] is drawing 
researchers’ attention. The k value is a more intuitive and direct parameter for users to 
set than the minimum threshold. 

Top-k HUI mining uses the same concept of utility as HUI mining; that is, an 
item’s utility is mainly reflected by the product of its profit and occurrence frequency. 
The k itemsets with the highest utility values comprise the target of top-k HUI mining. 
Wu et al. [13] first introduced the problem of top-k HUI mining, and proposed the 
TKU algorithm following the widely used two phase routine in HUI algorithms [7]. 
Later, they proposed a more efficient algorithm TKO using the one phase routine 
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[11]. Recently, several other top-k HUIs mining algorithms, such as kHMC [3] and 
TKEH [9], have also been proposed. 

Whether top-k HUI mining is approached using a two-phase or one-phase algo-
rithm, it is equivalent to HUI mining with the minimum utility threshold set to zero. 
Thus, the key techniques of these algorithms amount to various threshold raising 
strategies; that is, the minimum utility threshold increases gradually as the intermedi-
ate top-k results progress. Thus, in this paper, we aim to use a different strategy that 
does not require constant threshold-raising. We achieve this goal using the cross-
entropy method. 

The cross-entropy (CE) method is a combinatorial and multi-extremal optimization 
approach [2]. The CE method approaches the optimal values using an iterative proce-
dure where each iteration is composed of two phases: generating a random data sam-
ple, and updating parameters to produce better samples in the next iteration. Accord-
ing to the number of samples N, better results are retained and worse results are aban-
doned in each iteration. After many cycles of iterations, the best N results are ob-
tained. This approach is essentially consistent with the problem of top-k HUI mining. 
Thus, we use the CE method to formulate the novel top-k HUI mining algorithm pro-
posed in this paper. The major contributions of this work are summarized as follows: 

First, TKU-CE directly uses the utility value as the fitness function, and models the 
problem of top-k HUI mining through the perspective of combinatorial optimization. 
Second, TKU-CE updates a probability vector gradually. In this probability vector, 
there is a higher likelihood of updating the probability corresponding to itemsets with 
higher utility values. The experimental results show that TKU-CE is not only effi-
cient, but also requires less memory resources. Furthermore, TKU-CE can discover 
more than 90% of the actual top-k HUIs in most cases. 

2 Preliminaries 

2.1 Top-K HUI Mining Problem 

Let I= {i1, i2,…, im} be a finite set of items, and X ⊆ I is called an itemset. Let D={T1, 
T2, …, Tn} be a transaction database. Each transaction Ti∈D, with unique identifier 
tid, is a subset of I. 

The internal utility q(ip, Td) represents the quantity of item ip in transaction Td. The 
external utility p(ip) is the unit profit value of item ip. The utility of item ip in transac-
tion Td is defined as u(ip, Td) = p(ip) × q(ip, Td). The utility of itemset X in transaction 
Td is defined as ( , ) ( , )

p d
d p di X X T

u X T u i T
∈ ∧ ⊆

= ∑ . The utility of itemset X in D is de-

fined as ( ) ( , )
d d

dX T T D
u X u X T

⊆ ∧ ∈
= ∑ . The transaction utility of transaction Td is de-

fined as TU(Td) = u(Td, Td). The minimum utility threshold δ is given as a percentage 
of the total transaction utility values of the database, while the minimum utility value 
is defined as min_util = δ× ( )

∈∑
d

dT D
TU T . An itemset X is called a high utility itemset if 

u(X) ≥ min_util. The set of all HUIs in D w.r.t. min_util is denoted by fH(D, min_util). 
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An itemset X is called a top-k HUI in a database D if there are less than k itemsets 
whose utilities are larger than u(X) in fH(D, 0). Top-k HUI mining aims to discover the 
k itemsets with the highest utilities, where k is a parameter set by the user. 

Table 1. Example database 

TID Transactions TU 
T1 (A, 1) (B, 1) (C, 1) (F, 2) 19 
T2 (B, 1) (D, 1) (E, 1) 9 
T3 (A, 1) (B, 1) (C, 1) (F, 1) 15 
T4 (C, 3) (D, 2) (F, 1) 17 
T5 (A, 1) (C, 2) 13 

Table 2. Profit table 

Item A B C D E F 
Profit 7 1 3 2 6 4 

Example 1. Consider the database in Table 1 and the profit table in Table 2. For con-
venience, we write an itemset {B, C} as BC. In the example database, the utility of 
item C in transaction T1 is: u(C, T1) = 3×1 = 3, the utility of itemset BC in transaction 
T1 is: u(BC, T1) = u(B, T1) + u(C, T1) = 4, and the utility of itemset BC in the transac-
tion database is u(BC) = u(BC, T1) + u(BC, T3) = 8. The transaction utility of T5 is: 
TU(T5) = u(AC, T5) = 13. The utilities of the other transactions are given in the third 
column of Table 1. In this example, the set of top-3 HUIs is {ABCF: 34, AC: 33, 
ACF: 32}, where the number beside each itemset indicates its utility. 

2.2 Cross-Entropy Method 

The CE method can be used either for estimating probabilities of rare events in com-
plex stochastic networks, or for solving difficult combinatorial optimization problems 
(COP). In this paper, we determine the top-k HUIs following the COP methodology. 

The classical CE for COPs involving binary vectors is formalized as follows. Let y 
= (y1, y2, …, yn) be an n-dimensional binary vector, that is, the value of yi (1 ≤ i ≤ n) is 
either zero or one. The goal of the CE method is to reconstruct the unknown vector y 
by maximizing the function S(x) using a random search algorithm. 

 
1

( ) | |n
j jj

S x n x y
=

= − −∑  (1) 

A naive way to find y is to repeatedly generate binary vectors x = (x1, x2, …, xn) un-
til a solution is equal to y, leading to S(x) = n. Elements of the trial binary vector x, 
namely x1, x2, …, xn are independent Bernoulli random variables with success proba-
bilities p1, p2, . . . , pn, and these probabilities can comprise a probability vector 

1 2
' ( , , ..., )=

n
p p p p . The CE method for COP consists of creating a sequence of proba-

bility vectors 
0 1
' , ' , ...p p  and levels γ1, γ2, …, such that the sequence 

0 1
' , ' , ...p p  converg-
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es to the optimal probability vector, and the sequence γ1, γ2, … converges to the opti-
mal performance. 

Initially, 
0
' (1 / 2,1 / 2,...,1 / 2)=p . For a sample x1, x2, …, xN of Bernoulli vectors, cal-

culate S(xi) for all i, and order the elements according to descending S(xi). Let γt be a 
ρ sample quantile of the performances. That is: 

  ( )t NS ργ
×

=  (2) 

Then each element of the probability vector is updated by: 

 ,
{ ( ) } { 1}1

{ ( ) }1

' γ

γ

≥ ==

≥=

=
∑

∑
i t ij

i t

t j

N
S x xi

N
S xi

p
I I

I
 (3) 

where j = 1, 2, …, n, xi = (xi1, xi2, …, xin), t is the iteration number, and I(⋅) is the indi-
cator function defined as: 

 
1,  if  is true

0,  otherwise
=




E

E
I  (4) 

where E is an event. 
Eq. 3 is used iteratively to update the probability vector until the stopping criterion 

is met. There are two possible stopping criteria: γt does not change for a number of 
subsequent iterations or the probability vector has converged to a binary vector. 

3 Existing Algorithms 

3.1 Top-K HUI Mining 

The basic concepts of top-k HUI mining were given by Wu et al. [13]. Since the anti-
monotonicity-based pruning strategies of top-k FI mining [12] cannot be used directly 
for top-k HUI mining, Wu et al. introduced the concept of the optimal minimum utili-
ty threshold, and used a threshold raising method to improve the mining efficiency. 
REPT [8] is another top-k HUI mining algorithm that follows the two phase method-
ology. The algorithm constructs a global tree structure to generate candidate top-k 
HUIs using three threshold raising strategies, and exploits exact and pre-evaluated 
utilities of itemsets with a length of one or two to reduce the number of candidates. 

Recent algorithms focus on mining top-k HUIs directly without generating candi-
dates. The TKO algorithm [11] utilizes a utility list data structure to maintain itemset 
information during the mining process. Furthermore, TKO also uses three pruning 
strategies to facilitate the mining process. kHMC [3] also mines the top-k HUIs in one 
phase. Besides a utility list, kHMC proposes the concept of coverage to raise the in-
termediate thresholds. 

For existing top-k HUI mining algorithms, the major challenge differentiating top-k 
HUI mining and traditional HUI mining is the threshold raising strategies. Gradually 
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raising the minimum utility threshold constricts the search space during the mining 
process. Thus, new methods that achieve suitable performance without using thresh-
old raising strategies are pertinent for top-k HUI mining. 

3.2 HUI Mining Using Heuristic Methods 

Inspired by biological and physical phenomena, heuristic methods are effective for 
solving combinatorial problems, and have been used to traverse immense candidate 
itemset spaces within an acceptable time for mining FIs and HUIs. 

Two HUI mining algorithms, HUPEUMU-GARM and HUPEWUMU-GARM, based 
on the genetic algorithm (GA) are proposed in [5]. Premature convergence is the main 
problem of these two algorithms; that is, the two algorithms easily fall into local op-
tima. Particle swarm optimization (PSO) is another heuristic method used for mining 
HUIs. The PSO-based algorithm discovers HUIs comprehensively using local optimi-
zation and global optimization [6]. 

Unlike GAs and PSOs, ant colony optimization (ACO) produces a feasible solution 
in a constructive way. Wu et al. proposed an ACO-based algorithm called HUIM-
ACS for mining HUIs [14]. This algorithm generates a routing graph before all of the 
ants start their tours. Furthermore, positive pruning and recursive pruning are used to 
improve the algorithm’s efficiency. 

Song and Huang studied the problem of HUI mining from the perspective of the ar-
tificial bee colony (ABC) algorithm. The proposed HUIM-ABC discovers HUIs by 
modeling the itemsets as nectar sources [10]. For each nectar source, three types of 
bees are used: employed bee, onlooker bee, and scout bee, for sequential optimization 
within one iteration. During one iteration, the algorithm outputs an itemset when it is 
verified as an HUI. This process is executed iteratively until the maximal cycle num-
ber is reached.  

To the best of our knowledge, the heuristic method of cross-entropy has neither 
been used in HUI mining nor in top-k HUI mining. 

4 The Proposed TKU-CE Algorithm 

4.1 Bitmap Item Information Representation 

The first component of the proposed TKU-CE algorithm is the representation of 
items. We use bitmap, an effective representation of item information in FI mining 
and HUI mining algorithms, in TKU-CE to identify transactions containing the target 
itemsets. We can calculate the utility values of the target itemsets efficiently using bit-
wise operations. 

Specifically, TKU-CE uses a bitmap cover representation for itemsets. In a bitmap 
cover, there is one bit for each transaction in the database. If item i appears in transac-
tion Tj, then bit j of the bitmap cover for item i is set to one; otherwise, the bit is set to 
zero. This naturally extends to itemsets. Let X be an itemset, Bit(X) corresponds to the 
bitmap cover that represents the transaction set for the itemset X. Let X and Y be two 
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itemsets, Bit(X∪Y) can be computed as Bit(X)∩Bit(Y), i.e., the bitwise-AND of Bit(X) 
and Bit(Y). 

4.2 Modeling Top-K HUI Mining Based on the CE Method 

After transforming the database into a bitmap, it is natural to encode each solution in 
a binary vector. To discover the top-k HUIs from the transaction database, we use the 
utility of the itemset to replace Eq. 1 directly. That is, for an itemset X: 

 S(X) = u(X) (5) 

In each iteration t, we sort a sample X1, X2, …, XN in descending order of S(xi) (1 ≤ 
i ≤ N), and update the sample quantile γt and the probability vector 'tp  accordingly. 

4.3 The Proposed Algorithm 

Algorithm 1 describes our top-k HUI mining algorithm TKU-CE. 
Algorithm 1 TKU-CE 
Input Transaction database D, the number of desired HUIs k, sample num-

bers N, the quantile parameter ρ, the maximum number of iterations 
max_iter 

Output Top-k high utility itemsets 
1 Initialization( ); 
2 while t ≤ max_iter and 'tp  is not a binary vector do 
3   Calculate 'tp  using Eq. 3; 
4   for i=1 to N do 
5     for j=1 to |I| do 
6       Generate Xij with the probability of ,'t jp ; 
7     end for 
8   end for 
9   Sort the N itemsets by descending order of utility; 
10   Update the set of top-k HUIs KH using the new sample; 
11   Calculate γt using Eq. 2; 
12   t++; 
13 end while 
14 Output top-k HUIs. 

In Algorithm 1, the procedure Initialization( ), described in Algorithm 2, is first 
called in Step 1. The main loop from Step 2 to Step 13 calculates the top-k HUIs itera-
tively. Besides the maximal number of iterations, the probability vector becoming a 
binary vector is also a stopping criterion. With a binary probability vector, all of the N 
itemsets are the same in one iteration, because each item is definitely included or not 
included in each itemset. For example, there are five items A, B, C, D, and E. After 
many iterations, the probability vector converges to (1, 1, 1, 0, 0), then the itemsets 
within the sample are all ABC because the probabilities of the bits corresponding to D 
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and E are zero. Step 3 calculates the probability vector of the new iteration. The loop 
from Step 4 to Step 8 generates N new itemsets bit by bit. Here, |I| is the number of 
items in I. Specifically, for itemset Xi and its jth bit, we randomly generate a probabil-
ity pi,j, then determine the value Xij by: 

 , ,

, ,

1,  if '

0,  if '  

≤
=

>





ij

i j t j

i j t j

p p
X

p p
 (6) 

Step 9 arranges the itemsets in descending order of utility. We update KH, the set of 
the top-k HUIs, according to the latest sample in Step 10. The new ρ sample quantile is 
calculated in Step 11. Step 12 increments the iteration number by one. Finally, Step 
14 outputs all of the discovered top-k HUIs. 

It should be noted that the number of resulting itemsets of top-k HUI mining may be 
either less than k or more than k. As in TKU and TKO [11], we output the actual re-
sults regardless of whether the number of results is more or less than k. 
Algorithm 2 Initialization( ) 

1 Represent the database using a bitmap; 
2 0'p =(1/2, 1/2, …, 1/2); 
3 for i=1 to N do 
4   for j=1 to |I| do 
5     Generate Xij with a probability of 0,' jp ; 
6   end for 
7 end for 

8 Sort the N itemsets by descending order of utility, and denote them as 
S1, S2, … SN; 

9 Initialize the set of top-k HUIs KH with S1, S2, …, Sk; 
10 Calculate γt using Eq. 2; 
11 t = 1; 

In Algorithm 2, we first construct the bitmap representation of the database in Step 
1. Step 2 initializes all of the probabilities in the probability vector to 1/2. That is the 
probability of being one or zero is 0.5. The loop (Steps 3–7) initializes the N itemsets 
of the first iteration. Step 8 reorders the itemsets by descending order of utility. Step 9 
initializes KH according to the sample of the first iteration. Step 10 then calculates the 
ρ sample quantile. Finally, Step 11 sets the iteration number to one. 

5 Performance Evaluation 

In this section, we evaluate the performance of our TKU-CE algorithm and compare it 
with the TKU [13] and TKO [11] algorithms. We downloaded the source code of the 
two comparison algorithms from the SPMF data mining library [4]. 
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5.1 Test Environment and Datasets 

We conducted the experiments on a computer with a 4-Core 3.40 GHz CPU and 8 GB 
memory running 64-bit Microsoft Windows 10. We wrote our programs in Java. We 
used both synthetic and real datasets to evaluate the performance of the algorithms. 
We generated two synthetic datasets from the IBM data generator [1]: T25I100D5k 
and T35I100D7k. The parameters are as follows: T is the average size of the transac-
tions, I is the total number of different items, and D is the total number of transac-
tions. We downloaded real datasets from the SPMF data mining library [4]. Both 
Chess and Connect datasets originate from game steps. Table 3 gives the characteris-
tics of the datasets used in the experiments. 

Table 3. Characteristics of datasets used for experiment evaluations 

Datasets Avg. trans. length No. of items No. of trans 
T25I100D5k 25 100 5,000 
T35I100D7k 35 100 7,000 
Chess 37 76 3,196 
Connect 43 130 67,557 

The two real datasets already contain the utility information, while the two synthet-
ic datasets do not contain the utility value or quantity of each item in each transaction. 
As in TKU [13] and TKO [11], we generate the unit profits for items between 1 and 
1,000 using a log-normal distribution and generate the item quantities randomly be-
tween 1 and 5. 

For all experiments, we set the sample number to 2,000, ρ to 0.2, and the maxi-
mum number of iterations to 2,000. 

5.2 Runtime 

We demonstrate the efficiency of our algorithm and the comparison algorithms with a 
varying number of desired itemsets, namely k, for each dataset. 

Figure 1(a) shows the execution time comparison between the algorithms on the 
T25I100D5k dataset. As k increases from 20 to 100, TKU-CE is 8.70 times faster than 
TKU, and one order of magnitude faster than TKO, on average. In this set of experi-
ments, TKU is faster than TKO. This is because the utility list and the pre-evaluation 
matrix structure of TKO are not effective on this sparse dataset, and these operations 
add computational complexity with respect to the other two algorithms. 

Figure 1(b) shows the execution time comparison between the algorithms on the 
T35I100D7k dataset as k increases from 3 to 11. For this dataset, TKU did not return 
any results even after four days, thus, we did not plot its results. TKU-CE’s superior 
efficiency over TKO is more obvious on T35I100D7k. TKU-CE is consistently three 
orders of magnitude faster than TKO. For 11 itemsets, the runtime comparison be-
tween TKU-CE and TKO is 35.696 seconds to 223,016.616 seconds, respectively. 
Because TKO incurs a very long runtime for this dataset, we set a low number of 
desired itemsets to obtain the output within a reasonable time. 
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Fig. 1. Execution times for the four datasets 

For the Chess dataset, when the range of k is between 20 and 100, TKU runs out of 
memory. Thus, we again omit the results of TKU in Fig.1(c). This time, TKU-CE is 
faster than TKO by 46.09% on average. 

As with the results on Chess, we did not plot the TKU results in Fig.1(d) because it 
again runs out of memory for the Connect dataset. On average, TKU-CE is 4.43 times 
faster than TKO. 

As we can see from Fig.1, the proposed heuristic algorithm TKU-CE always 
demonstrates superior efficiency. With respect to the other two algorithms, the one-
phase TKO algorithm outperforms the two-phase TKU algorithm in most cases. The 
runtime of TKU-CE does not increase as k increases because when the sample num-
ber N is greater than k, k only affects the initialization and update of the set of top-k 
HUIs. This renders TKU-CE not only efficient but also easy to implement. 

5.3 Memory Consumption 

We also compare the memory usage of the three algorithms for the four datasets. The 
results are shown in Fig. 2. For the same reasons stated in Sect. 5.2, we only plot the 
results of TKU for T25I100D5k. 
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Fig. 2. Memory usage for the four datasets 

Figure 2(a) shows the memory usage for the T25I100D5k dataset. On average 
TKU-CE consumes 2.69 times less memory than TKU, and 73.45% less memory than 
TKO. Although Fig.1(a) shows that TKU is more efficient than TKO, TKO outper-
forms TKU in terms of storage consumption. 

Figures 2(b) and 1(b) show that the proposed TKU-CE algorithm is not only re-
markably more efficient than TKO, but also uses very little memory—less than 10MB 
on T35I100D7k. 

Figures 2(c) and 2(d) show the memory consumption for the two real datasets 
Chess and Connect. TKU-CE still outperforms TKO with respect to memory usage. 
On average TKU-CE consumes 2.75 times and 4.92 times less memory than TKO on 
Chess and Connect, respectively. 

From Fig. 2, we can see that TKU-CE consumes less memory than TKU and TKO 
on these four datasets. Furthermore, the memory usage of TKU-CE is nearly constant. 
This is because TKU-CE does not consider additional tree or list structures for storing 
and transforming the original information and does not include any threshold raising 
and pruning strategies. Thus, it is more suitable for the problem of top-k HUI mining 
without a user-specified minimum utility threshold. 
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5.4 Accuracy 

A heuristic top-k HUI mining algorithm cannot ensure the discovery of all of the cor-
rect itemsets within a certain number of cycles; that is, some itemsets discovered by 
TKU-CE may not correspond to the actual top-k itemsets of the entire dataset. In this 
section, we compared the percentage of discovered actual top-k HUIs by k. We use 
the TKO algorithm to discover the actual complete list of top-k HUIs from the four 
datasets. We use the following equation to calculate the accuracy of top-k HUIs dis-
covered by TKU-CE. 

 Acck = CEk / k × 100% (7) 

where CEk is the number of actual top-k HUIs discovered by TKU-CE. 

Table 4. Accuracy for the four datasets 

T25I100D5k k 20 40 60 80 100 
Acck (%) 100 100 90 91.25 75 

T35I100D7k k 3 5 7 9 11 
Acck (%) 100 100 100 100 100 

Chess k 20 40 60 80 100 
Acck (%) 100 100 100 97.50 99 

Connect k 20 40 60 80 100 
Acck (%) 95 100 100 96.25 97 

Table 4 shows that TKU-CE can discover more than 90% of the actual top-k HUIs 
within 2000 iterations, except when k is set to 100 for the T25I100D5k dataset. Fur-
thermore, TKU-CE outputs 100% of true top-k HUIs with 12 times for the four da-
tasets. As the number of experiments for each dataset is 5, the probability of TKU-CE 
returning the exact top-k HUIs is 60%. Thus, we see that TKU-CE outputs most of the 
actual top-k HUIs within less time and consuming less memory. 

6 Conclusions 

In this paper, we heuristically tackle top-k HUI mining by proposing a novel CE-
based algorithm called TKU-CE. In contrast to existing one-phase or two-phase algo-
rithms, TKU-CE approaches the optimal results using a stochastic approach. The 
TKU-CE algorithm does not use additional tree or list structures to represent or trans-
form the original information. Furthermore, we also avoid the widespread threshold 
raising and pruning strategies of existing related algorithms. Experimental results on 
both synthetic and real datasets show that TKU-CE can discover a suitable number of 
top-k HUIs with high efficiency and low memory usage. 

Acknowledgments. This work was partially supported by the National Natural Sci-
ence Foundation of China (61977001), the Great Wall Scholar Program 
(CIT&TCD20190305), and Beijing Urban Governance Research Center. 
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