
Mining Partially-Ordered Episode

Rules in an Event Sequence

Philippe Fournier-Viger1, Yangming Chen1,

Farid Nouioua2, Jerry Chun-Wei Lin3

1 Harbin Institute of Technology (Shenzhen), China

2 University of Bordj Bou Arreridj, Algeria

3 Western Norway University of Applied Sciences (HVL), Norway

1. Introduction

Frequent Episode Mining

𝐈𝐧𝐩𝐮𝐭: a sequence of events with timestamps

𝐎𝐮𝐭𝐩𝐮𝐭:

All frequent episode
(𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑚𝑖𝑛𝑆𝑢𝑝)

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦𝐬:

WINEPI, MINEPI, EMMA, MINEPI+,
…

E𝐩𝐢𝐬𝐨𝐝𝐞 𝐓𝐲𝐩𝐞𝐬:

• parallel episodes,
• serial episodes,
• complex episodes…

2

1. Introduction

Frequent Episode Mining

𝐈𝐧𝐩𝐮𝐭:

𝐎𝐮𝐭𝐩𝐮𝐭:

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦𝐬:

WINEPI, MINEPI, EMMA, MINEPI+,
…

E𝐩𝐢𝐬𝐨𝐝𝐞 𝐓𝐲𝐩𝐞𝐬:

• parallel episodes,
• serial episodes,
• complex episodes…

𝐄𝐱𝐚𝐦𝐩𝐥𝐞:

episode <{a,b},{a}>

3

a sequence of events with timestamps

All frequent episode
(𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑚𝑖𝑛𝑆𝑢𝑝)

1. Introduction

Episode Rule Mining

𝐎𝐮𝐭𝐩𝐮𝐭:

Each 𝐞𝐩𝐢𝐬𝐨𝐝𝐞 𝐫𝐮𝐥𝐞 ∶ 𝑋 → 𝑌 such that:

Supp(X) ≥ 𝑚𝑖𝑛𝑆𝑢𝑝

(conf(X → Y) =
Supp(X∩Y)

𝑆𝑢𝑝𝑝(𝑋)
≥ confidence)

4

𝐈𝐧𝐩𝐮𝐭: a sequence of events with timestamps

1. Introduction

Episode Rule Mining

𝐈𝐧𝐩𝐮𝐭: a sequence of events with timestamps

𝐎𝐮𝐭𝐩𝐮𝐭:

Each 𝐞𝐩𝐢𝐬𝐨𝐝𝐞 𝐫𝐮𝐥𝐞 ∶ 𝑋 → 𝑌 such that:

Supp(X) ≥ 𝑚𝑖𝑛𝑆𝑢𝑝

(conf(X → Y) =
Supp(X∩Y)

𝑆𝑢𝑝𝑝(𝑋)
≥ confidence)

𝐄𝐱𝐚𝐦𝐩𝐥𝐞:

〈{a},{c},{b}〉→〈{d}〉

5

1. Introduction

Related Work

To address these
issues

• Frequent episode rules (1995, and many papers after)

• Utility-based episode rules (ASOC 2017)

• Discovering episodes rule having a high importance in a
sequence of discrete events with weights and quantities

• Precise-positioning episode rules (TKDE 2018, ICDE 2017)

• the elapsed time between the antecedent and the
consequent is fixed

• Distant and essential episode rules (ESWA 2018)

• the antecedent is as small as possible in terms of
number of events and of occurrence duration

• consequent is temporally distant from the antecedent

1. Introduction

An Important Limitation

Events within an episode rule must follow a very strict

temporal ordering

Example:

〈{a},{b},{c}〉 → 〈{d}〉 But for applications such as

analyzing transactions

in a retail store,

all these rules may be the

same:

{a, b, c}→{d}

〈{a},{c},{b}〉 → 〈{d}〉

〈{b},{c},{a}〉 → 〈{d}〉

〈{b},{a},{c}〉 → 〈{d}〉

〈{c},{b},{a}〉 → 〈{d}〉

〈{c},{a},{b}〉 → 〈{d}〉

7

2. Definition

Event set

8

An event set is a set of events. e.g. {a,b,c}

2. Definition

Event set

The non-redundant occurrences of {a,b,c} are:

Occ({a, b, c}) ={[t1, t2],[t5, t7],[t10, t10]}

9

An event set is a set of events. e.g. {a,b,c}

2. Definition

The non-redundant occurrences of {a,b,c} are:

Occ({a, b, c}) ={[t1, t2],[t5, t7],[t10, t10]}

Note that a time interval such as [t10, t11] is redundant to

Occ({a, b, c}) because [t10, t11] is overlapping with [t10, t10].

10

Event set

An event set is a set of events. e.g. {a,b,c}

2. Definition

Partially-Ordered Episode Rule（POER）

minsup= 3, minconf= 0.6, XSpan= 3, XYSpan= 1, YSpan= 1

Example: {a, b, c} → {d}

where occ(R) = {[t1, t3],[t5, t8]}

11

A new type of episode rules that loosen the ordering

constraint.

3. The POERM algorithm

minsup= 3

Frequent 1-event sets : {a} , {b}, {c}

extends i-event sets into i+1-event sets

For each occurrences [pos.start, pos.end] of i-event sets X

Search for [pos.end−XSpan+1, pos.start),[pos.end+1, pos.start+XSpan),

and [pos.start, pos.end] to extend it

12

STEP 1: Find the frequent rule antecedents

3. The POERM algorithm

Frequent event sets : <{a} , {b}, {c},{a, b}, {a, c}, {b, c}, {a, b, c}>

Extends i-event consequent rule into i+1-event consequent

Frequent 1-event consequent rule

13

STEP 2: Find consequents to make rules

3 A Baseline Algorithm called POERM-ALL

Find all possible

antecedents

Find all possible

consequents

Concatenate antecedents with

consequents to get POER candidates

Filter to obtain

the POER rules
14

4 Experimental Evaluation

Dataset # Timestamps # Events
Average

event set size

OnlineRetail 541,909 2,603 4.37

Fruithut 181,970 1,265 3.58

retail 88,162 16,470 10,30

Default Values minsup minconf Span

OnlineRetail 5000 0.5 5

Fruithut 5000 0.5 5

retail 4000 0.5 5

15

4. Experimental Evaluation (runtime)

16

4. Experimental Evaluation (memory)

• On OnlineRetail and FruitHut, POERM consumes less runtime

and memory then POERM-ALL.

• But on sparse datasets such as Retail, POERM can’t perform

better than POERM-ALL.

17

4. Experimental Evaluation (patterns in real data)

18

These patterns were discovered in the Fruithut dataset:

5. Conclusion

•Contributions:

➢A novel type of rules called partially-ordered episode rules

➢An efficient algorithm named POERM (Partially-Ordered
Episode Rule Miner) to find these rules

➢Experimental evaluation on several benchmark dataset shows
that POERM has excellent performance and find interesting
rules.

•Future work:

➢POERM for streaming data and big data.

➢Considering more complex data types

➢Open-source code, datasets:

➢SPMF data mining library (over 200 algorithms)
19

http://www.philippe-fournier-viger.com/spmf/

Thanks for listening!

20

21

The timestamps that are searched for a candidate ruleX→Y

