Mining Partially-Ordered Episode

Rules Iin an Event Sequence

Philippe Fournier-Vigert, Yangming Chen?,
Farid Nouioua?, Jerry Chun-Wei Lin3

1 Harbin Institute of Technology (Shenzhen), China
2 University of Bordj Bou Arreridj, Algeria
3 Western Norway University of Applied Sciences (HVL), Norway

:} 1. Introduction

‘ > Frequent Episode Mining

Input: a sequence of events with timestamps

Events: C a,b d a C b d a,b,c a
%
Timestamps: 7, L Lz Uy L Ly G g Iy ly I
Output: Episode Types:
All frequent episode » parallel episodes,
(occurrence count = minSup) * serial episodes,

* complex episodes...

Algorithms:
WINEPI, MINEPI, EMMA, MINEPI+,

2

} 1. Introduction

‘ > Frequent Episode Mining

Input: a sequence of events with timestamps

Events: C m d E C b d m C H

Timestamps: t ts ts t, ts ts ts ls lg L0 l;;
Output: Episode Types:
All frequent episode » parallel episodes,
(occurrence count = minSup) serial episodes,
* complex episodes...
Exar-nple: Algorithms:
episode <{a,b},{a}> WINEPI, MINEPI, EMMA, MINEPI+,

3

:} 1. Introduction

‘ > Episode Rule Mining

Input: a sequence of events with timestamps

Events: C a,b d a C b d a,b,c a
Timestamps: 7, > I3 Iy ls ls 7 ls lg Lio Uiz
Output:

Each episode rule : X — Y such that:
(Supp(X) = minSup)

S XNnY .
WP(XNY) - confidence)

(conf(X =Y) = E———

} 1. Introduction

‘ > Episode Rule Mining

Input: a sequence of events with timestamps

Events: C a,b d |a C bI E a,b,c a
-—0—0 00000000

Timestamps: t ts ts t, ts ts ts ls lg L0 l;;

Output: Example:
Each episode rule : X - Y such that: ({a},{c}{b}) — {d})

(Supp(X) = minSup)

S XNnY .
WP(XNY) - confidence)

(conf(X =Y) = E———

.5' 1. Introduction

Related Work

>

* Frequent episode rules (1995, and many papers after)

« Utility-based episode rules (ASOC 2017)

* Discovering episodes rule having a high importance in a
sequence of discrete events with weights and quantities

* Precise-positioning episode rules (TKDE 2018, ICDE 2017)
* the elapsed time between the antecedent and the
consequent is fixed
 Distant and essential episode rules (ESWA 2018)

* the antecedent is as small as possible in terms of
number of events and of occurrence duration

* consequent is temporally distant from the antecedent

.5- 1. Introduction

‘> An Important Limitation

Events within an episode rule must follow a very strict
temporal ordering

Example:
({a},{c}{b}) — {d}
(a){bhich) — {db But for applications such as
o analyzing transactions
({b}{a}f{c}) — dp in a retail store,
dbrichi{ah) — db) all these rules may be the
same:
<{C},{b},{a}> — <{d}> {a, b, c}—{d}
SORCRCHEEIG

:} 2. Definition

Event set
@

An event set is a set of events. e.qg. {a,b,c}

Events: C a,b d a € b d

Timestamps: [] [2 [3 [4 [5 [6 [7 [8

} 2. Definition

Event set
@

An event set is a set of events. e.qg. {a,b,c}

Events: I G a,b I d Ia G bI d a,b,c

Timestamps: % L Ls L ts ts t, lg Iy

The non-redundant occurrences of {a,b,c} are:
OCC({a1 b1 C}) :{[tl’ tZ]![tS’ t7],[t10’ th]}

} 2. Definition

Event set
@

An event set is a set of events. e.qg. {a,b,c}

Events: I G a,b I d Ia G bI d ab.c | a

Timestamps: ¢, s I t, L ts t; lg ly lLip [

The non-redundant occurrences of {a,b,c} are:
OCC({a1 b1 C}) :{[t1’ tZ]![tS’ t7],[t10’ th]}

Note that a time interval such as [t,,, t;;] IS redundant to
Occ({a, b, c}) because [t;,, t;] is overlapping with [t,,, t;]-

10

:} 2. Definition

‘ y Partially-Ordered Episode Rule (POER)

A new type of episode rules that loosen the ordering

constraint.
Events: C a,b m a C b m abc a
A 4 N

Timestamps: . E; L t, ts ts t, lg lo Lio [

Example: {a, b, c} — {d}
where occ(R) = {[t1, t3],[t5, t8]}

minsup= 3, minconf= 0.6, XSpan= 3, XYSpan=1, YSpan=1

X —r Y

ts t tw t
|
|

| | |
to —ti < XSpan ty —to < XY Span t; —t, <Y Span

.5' 3. The POERM algorithm

Events: C a,b d a c b d a,b,c a
Timestamps: £, L b U G L L lyg Lo Iy I

STEP 1: Find the frequent rule antecedents

minsup= 3
|

Frequent 1-event sets : {a}, {b}, {c}
|

extends i-event sets into i+1-event sets

!

For each occurrences [pos.start, pos.end] of i-event sets X

l

Search for [pos.end—XSpan+1, pos.start),[pos.end+1, pos.start+XSpan),
and [pos.start, pos.end] to extend it

:} 3. The POERM algorithm

Events: C a,b d a c b d a,b,c a
Timestamps: f, f, ty 4 Gty Lty ly lp I

STEP 2: Find consequents to make rules

Frequent event sets : <{a} , {b}, {c},{a, b}, {a, c}, {b, ¢}, {a, b, c}>

l

Frequent 1-event consequent rule

!

Extends i-event consequent rule into i+1-event consequent

13

} 3 A Baseline Algorithm called POERM-ALL

Find all possible Find all possible
antecedents consequents

& o

Concatenate antecedents with
consequents to get POER candidates

Filter to obtain
the POER rules

14

.5' 4 Experimental Evaluation

Dataset # Timestamps | # Events Average.
event set size
OnlineRetail 541,909 2,603 4.37
Fruithut 181,970 1,265 3.58
retail 88,162 16,470 10,30
Default Values minsup minconf Span
OnlineRetall 5000 0.5 5
Fruithut 5000 0.5 5
retail 4000 0.5 5

} 4. Experimental Evaluation (runtime)

a)

—_—

Runtime (s

b)

Runtime (s)

Runtime (s)

1400 _ _ 145 - 120
1200 OnlineRetail 175 Fruithut 100 | .
1000 = 105 — 20 _ Retail
800 ¢ g5 bt T T—
E b -
600 £ 65 g 60
g £ 40
400 Z 45 | —— 5 ? S
200 | LI S — % 20 DG DG |
- - o [5 1 e S— 1 1 1
4000 4500 5000 5500 6000 3500 4000 4500 5000 5500 3000 3500 4000 4500 5000
minsup minsup minsup
T
-,
3000 = 8T 20N
2000 E T st N
1000 | I g 5 1 T | El0F -
T 1 T e o 4 o 50 — ____-__-________1l
T - e 5 1 1 . T ____I.__—-’- —p—
0.2 0.3 0.4 0.5 0.6 0.3 0.4 5 0.6 0.7
minconf nuhconf 0.3 0.4 0.5] 0.6 0.7
mincon,
4000 205 350
3500 F 705 300 kD
3000 F __ 605 F = 250 b //
2500 o 505 g 200 /
2000 F E 405 | = e
1500 | € 305 | SO
1000 | < 505 | 100 4
500 | P 105 | _ 50 4
—— 4 - D S e | ——% —¢—¢ |
3 4 5 6 7 4 5 6 7 8 3 4 5 6 7
span span span
—e— POERM-ALL ——— POERM |

16

:} 4. Experimental Evaluation (memory)

3 7 7
PN
g8 r - 6 — 6
A =
7} & @ 5 . 5 -
@ 6 v 2 4 P —_
2 4 g 2 - 8 4 P
S ~—— T E3r -~ = _—
o €z E 3 I~ g __‘_ B "
E 4 F , =2 L~ = -
@ s & = £ T e——
= 3+ — 1 - % 2 T__
2 T L 1 1 1 1 1 L
3 4 5 6 7 a 5 s 7 3 3 3 5 é
OnlineRetail Fruithut Retail
—#— POERM-ALL —— POERM

On OnlineRetail and FruitHut, POERM consumes less runtime
and memory then POERM-ALL.

But on sparse datasets such as Retail, POERM can’t perform
better than POERM-ALL.

17

} 4. Experimental Evaluation (patterns in real data)

These patterns were discovered in the Fruithut dataset:

e

Rule occ(X — Y) oce(X)
Cucumber Lebanese, Field Tomatoes—Banana Cavendish 4910 6152
Capsicum red, Field Tomatoes—Banana Cavendish 5033 6352
Broccoli, Capsicum red—Field Tomatoes 2343 4043
Nectarine White— Watermelon seedless 2498 D687
Garlic loose, Field Tomatoes—Capsicum red 1752 4409
Cucumber Lebanese, Capsicum red —Eggplant 1236 4098

18

.5' 5. Conclusion

«Contributions:
>A novel type of rules called partially-ordered episode rules

>An efficient algorithm named POERM (Partially-Ordered
Episode Rule Miner) to find these rules

> Experimental evaluation on several benchmark dataset shows
that POERM has excellent performance and find interesting
rules.

*Future work:
»POERM for streaming data and big data.
»Considering more complex data types

>Open-source code, datasets:
»SPMF data mining library (over 200 algorithms)

http://www.philippe-fournier-viger.com/spmf/

Thanks for listening!

The timestamps that are searched for a candidate ruleX—Y

X
tX.sta'rt tX.end :té:;ta'r't tY.sta'rt tY.e?'Ld

tend

| | | | |
[? tY.e'n,d] [YLY start tY.end] [tY.sta/rt: ?]

21

