# Mining Partially-Ordered Episode Rules in an Event Sequence

Philippe Fournier-Viger<sup>1</sup>, Yangming Chen<sup>1</sup>, Farid Nouioua<sup>2</sup>, Jerry Chun-Wei Lin<sup>3</sup>

1 Harbin Institute of Technology (Shenzhen), China 2 University of Bordj Bou Arreridj, Algeria 3 Western Norway University of Applied Sciences (HVL), Norway







## **Frequent Episode Mining**

**Input**: a sequence of events with timestamps



#### **Output:**

All frequent episode  $(occurrence\ count \ge minSup)$ 

#### **Episode Types**:

- parallel episodes,
- serial episodes,
- complex episodes...

#### **Algorithms**:

WINEPI, MINEPI, EMMA, MINEPI+,

..





## **Frequent Episode Mining**

**Input**: a sequence of events with timestamps



#### **Output:**

All frequent episode  $(occurrence\ count \ge minSup)$ 

#### **Example:**

episode <{a,b},{a}>

#### **Episode Types**:

- parallel episodes,
- serial episodes,
- complex episodes...

#### **Algorithms**:

WINEPI, MINEPI, EMMA, MINEPI+,

..





## **Episode Rule Mining**

#### **Input**: a sequence of events with timestamps

Events: c a,b d a c b d a,b,c a

Timestamps: 
$$t_1$$
  $t_2$   $t_3$   $t_4$   $t_5$   $t_6$   $t_7$   $t_8$   $t_9$   $t_{10}$   $t_{11}$ 

#### **Output:**

**Each episode rule** :  $X \rightarrow Y$  such that:

$$(Supp(X) \ge minSup)$$

$$(conf(X \rightarrow Y) = \frac{Supp(X \cap Y)}{Supp(X)} \ge confidence)$$





## **Episode Rule Mining**

#### **Input**: a sequence of events with timestamps



#### Output:

**Each episode rule** :  $X \rightarrow Y$  such that:

$$\langle \{a\},\{c\},\{b\} \rangle \rightarrow \langle \{d\} \rangle$$

$$(Supp(X) \ge minSup)$$

$$(conf(X \rightarrow Y) = \frac{Supp(X \cap Y)}{Supp(X)} \ge confidence)$$





#### **Related Work**

- Frequent episode rules (1995, and many papers after)
- Utility-based episode rules (ASOC 2017)
  - Discovering episodes rule having a high importance in a sequence of discrete events with weights and quantities
- Precise-positioning episode rules (TKDE 2018, ICDE 2017)
  - the elapsed time between the antecedent and the consequent is fixed
- Distant and essential episode rules (ESWA 2018)
  - the antecedent is as small as possible in terms of number of events and of occurrence duration
  - consequent is temporally distant from the antecedent





#### **An Important Limitation**

## Events within an episode rule must follow a <u>very strict</u> temporal ordering

#### Example:

$$\langle \{a\}, \{c\}, \{b\} \rangle \rightarrow \langle \{d\} \rangle$$

$$\langle \{a\}, \{b\}, \{c\} \rangle \rightarrow \langle \{d\} \rangle$$

$$\langle \{b\}, \{a\}, \{c\} \rangle \rightarrow \langle \{d\} \rangle$$

$$\langle \{b\}, \{c\}, \{a\} \rangle \rightarrow \langle \{d\} \rangle$$

$$\langle \{c\}, \{b\}, \{a\} \rangle \rightarrow \langle \{d\} \rangle$$

$$\langle \{c\}, \{a\}, \{b\} \rangle \rightarrow \langle \{d\} \rangle$$



But for applications such as analyzing transactions in a retail store, all these rules may be the same:

$$\{a, b, c\} \rightarrow \{d\}$$





#### **Event set**

An **event set** is a set of events. e.g. {a,b,c}







#### **Event set**

An **event set** is a set of events. e.g. **{a,b,c}** 



The **non-redundant occurrences** of **{a,b,c}** are:

$$Occ({a, b, c}) = {[t_1, t_2], [t_5, t_7], [t_{10}, t_{10}]}$$





#### **Event set**

An **event set** is a set of events. e.g. **{a,b,c}** 



The **non-redundant occurrences** of **{a,b,c}** are:

$$Occ({a, b, c}) = {[t_1, t_2], [t_5, t_7], [t_{10}, t_{10}]}$$

Note that a time interval such as  $[t_{10}, t_{11}]$  is **redundant** to  $Occ(\{a, b, c\})$  because  $[t_{10}, t_{11}]$  is overlapping with  $[t_{10}, t_{10}]$ .





## Partially-Ordered Episode Rule (POER)

A new type of episode rules that loosen the ordering constraint.



**Example**:  $\{a, b, c\} \rightarrow \{d\}$  where occ(R) = {[t1, t3],[t5, t8]}

minsup= 3, minconf= 0.6, XSpan= 3, XYSpan= 1, YSpan= 1





## 3. The POERM algorithm



#### **STEP 1: Find the frequent rule antecedents**



Search for [pos.end-XSpan+1, pos.start),[pos.end+1, pos.start+XSpan), and [pos.start, pos.end] to extend it



## 3. The POERM algorithm



#### STEP 2: Find consequents to make rules

Frequent event sets : <{a} , {b}, {c},{a, b}, {a, c}, {b, c}, {a, b, c}>

Frequent 1-event consequent rule

Extends i-event consequent rule into i+1-event consequent



## 3 A Baseline Algorithm called POERM-ALL

Find all possible antecedents



Find all possible consequents



Concatenate antecedents with consequents to get POER candidates



Filter to obtain the POER rules



## 4 Experimental Evaluation

| Dataset      | # Timestamps | # Events | Average event set size |
|--------------|--------------|----------|------------------------|
| OnlineRetail | 541,909      | 2,603    | 4.37                   |
| Fruithut     | 181,970      | 1,265    | 3.58                   |
| retail       | 88,162       | 16,470   | 10,30                  |

| <b>Default Values</b> | minsup | minconf | Span |
|-----------------------|--------|---------|------|
| OnlineRetail          | 5000   | 0.5     | 5    |
| Fruithut              | 5000   | 0.5     | 5    |
| retail                | 4000   | 0.5     | 5    |



## 4. Experimental Evaluation (runtime)





## 4. Experimental Evaluation (memory)



- On OnlineRetail and FruitHut, POERM consumes less runtime and memory then POERM-ALL.
- But on sparse datasets such as Retail, POERM can't perform better than POERM-ALL.



## 4. Experimental Evaluation (patterns in real data)

#### These patterns were discovered in the Fruithut dataset:

| L                                                                                                                      |                            |           |
|------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|
| Rule                                                                                                                   | $\operatorname{occ}(X \to$ | Y) occ(X) |
| Cucumber Lebanese, Field Tomatoes→Banana Cavendish                                                                     | 4910                       | 6152      |
| Capsicum red, Field Tomatoes→Banana Cavendish                                                                          | 5033                       | 6352      |
| Broccoli, Capsicum red→Field Tomatoes                                                                                  | 2343                       | 4043      |
| Nectarine White→Watermelon seedless                                                                                    | 2498                       | 5687      |
| Garlic loose, Field Tomatoes→Capsicum red                                                                              | 1752                       | 4409      |
| Cucumber Lebanese, Capsicum red $\rightarrow \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 1236                       | 4098      |



#### Contributions:

- >A novel type of rules called partially-ordered episode rules
- ➤ An efficient algorithm named POERM (Partially-Ordered Episode Rule Miner) to find these rules
- ➤ Experimental evaluation on several benchmark dataset shows that POERM has excellent performance and find interesting rules.

#### •Future work:

- >POERM for streaming data and big data.
- ➤ Considering more complex data types

#### **≻Open-source code, datasets:**

> SPMF data mining library (over 200 algorithms)

## Thanks for listening!

The timestamps that are searched for a candidate ruleX→Y

