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1. Introduction

Frequent Episode Mining

𝐈𝐧𝐩𝐮𝐭: a sequence of events with timestamps

𝐎𝐮𝐭𝐩𝐮𝐭:

All frequent episode
(𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑚𝑖𝑛𝑆𝑢𝑝 )

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦𝐬:

WINEPI, MINEPI, EMMA, MINEPI+, 
…

E𝐩𝐢𝐬𝐨𝐝𝐞 𝐓𝐲𝐩𝐞𝐬:

• parallel episodes, 
• serial episodes, 
• complex episodes…
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1. Introduction

Frequent Episode Mining

𝐈𝐧𝐩𝐮𝐭:

𝐎𝐮𝐭𝐩𝐮𝐭:

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦𝐬:

WINEPI, MINEPI, EMMA, MINEPI+, 
…

E𝐩𝐢𝐬𝐨𝐝𝐞 𝐓𝐲𝐩𝐞𝐬:

• parallel episodes, 
• serial episodes, 
• complex episodes…

𝐄𝐱𝐚𝐦𝐩𝐥𝐞:

episode <{a,b},{a}>
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a sequence of events with timestamps

All frequent episode
(𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑚𝑖𝑛𝑆𝑢𝑝 )



1. Introduction

Episode Rule Mining

𝐎𝐮𝐭𝐩𝐮𝐭:

Each 𝐞𝐩𝐢𝐬𝐨𝐝𝐞 𝐫𝐮𝐥𝐞 ∶ 𝑋 → 𝑌 such that:

Supp(X) ≥ 𝑚𝑖𝑛𝑆𝑢𝑝

( conf(X → Y) = 
Supp(X∩Y)

𝑆𝑢𝑝𝑝(𝑋)
≥ confidence)
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1. Introduction

Episode Rule Mining

𝐈𝐧𝐩𝐮𝐭: a sequence of events with timestamps

𝐎𝐮𝐭𝐩𝐮𝐭:

Each 𝐞𝐩𝐢𝐬𝐨𝐝𝐞 𝐫𝐮𝐥𝐞 ∶ 𝑋 → 𝑌 such that:

Supp(X) ≥ 𝑚𝑖𝑛𝑆𝑢𝑝

( conf(X → Y) = 
Supp(X∩Y)

𝑆𝑢𝑝𝑝(𝑋)
≥ confidence)

𝐄𝐱𝐚𝐦𝐩𝐥𝐞:

〈{a},{c},{b}〉→〈{d}〉
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1. Introduction

Related Work

To address these 
issues

• Frequent episode rules (1995, and many papers after)

• Utility-based episode rules (ASOC 2017)

• Discovering episodes rule having a high importance in a 
sequence of discrete events with weights and quantities

• Precise-positioning episode rules (TKDE 2018, ICDE 2017)

• the elapsed time between the antecedent and the 
consequent is fixed

• Distant and essential episode rules (ESWA 2018)

• the antecedent is as small as possible in terms of 
number of events and of occurrence duration

• consequent is temporally distant from the antecedent



1. Introduction

An Important Limitation

Events within an episode rule must follow a very strict

temporal ordering

Example:

〈{a},{b},{c}〉 → 〈{d}〉 But for applications  such as 

analyzing transactions 

in a retail store, 

all these rules may be the 

same:

{a, b, c}→{d}

〈{a},{c},{b}〉 → 〈{d}〉

〈{b},{c},{a}〉 → 〈{d}〉

〈{b},{a},{c}〉 → 〈{d}〉

〈{c},{b},{a}〉 → 〈{d}〉

〈{c},{a},{b}〉 → 〈{d}〉

7



2. Definition

Event set
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An event set is a set of events. e.g. {a,b,c} 



2. Definition

Event set

The non-redundant occurrences of {a,b,c} are:

Occ({a, b, c}) ={[t1, t2],[t5, t7],[t10, t10]}
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An event set is a set of events. e.g. {a,b,c} 



2. Definition

The non-redundant occurrences of {a,b,c} are:

Occ({a, b, c}) ={[t1, t2],[t5, t7],[t10, t10]}

Note that a time interval such as [t10, t11] is redundant to 

Occ({a, b, c}) because [t10, t11]  is overlapping with [t10, t10].
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Event set

An event set is a set of events. e.g. {a,b,c} 



2. Definition

Partially-Ordered Episode Rule（POER）

minsup= 3, minconf= 0.6, XSpan= 3, XYSpan= 1,  YSpan= 1 

Example: {a, b, c} → {d} 

where occ(R) = {[t1, t3],[t5, t8]}
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A new type of episode rules that loosen the ordering 

constraint.



3. The POERM algorithm

minsup= 3

Frequent 1-event sets : {a} , {b}, {c}

extends i-event sets into i+1-event sets

For each occurrences  [pos.start, pos.end] of i-event sets X 

Search for [pos.end−XSpan+1, pos.start),[pos.end+1, pos.start+XSpan), 

and [pos.start, pos.end] to extend it
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STEP 1:  Find the frequent rule antecedents



3. The POERM algorithm

Frequent event sets : <{a} , {b}, {c},{a, b}, {a, c}, {b, c}, {a, b, c}>

Extends i-event consequent rule into i+1-event consequent 

Frequent 1-event consequent rule
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STEP 2:  Find consequents to make rules



3 A Baseline Algorithm called POERM-ALL

Find all possible 

antecedents

Find all possible 

consequents

Concatenate antecedents with 

consequents to get POER candidates

Filter to obtain 

the POER rules
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4 Experimental Evaluation

Dataset # Timestamps # Events
Average 

event set size

OnlineRetail 541,909 2,603 4.37

Fruithut 181,970 1,265 3.58

retail 88,162 16,470 10,30

Default Values minsup minconf Span

OnlineRetail 5000 0.5 5

Fruithut 5000 0.5 5

retail 4000 0.5 5
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4. Experimental Evaluation (runtime)
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4. Experimental Evaluation (memory)

• On OnlineRetail and FruitHut, POERM consumes less runtime 

and memory then POERM-ALL.

• But on sparse datasets such as Retail, POERM can’t perform 

better than POERM-ALL.
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4. Experimental Evaluation (patterns in real data)
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These patterns were discovered in the Fruithut dataset:



5. Conclusion

•Contributions:

➢A novel type of rules called partially-ordered episode rules

➢An efficient algorithm named POERM (Partially-Ordered 
Episode Rule Miner) to find these rules

➢Experimental evaluation on several benchmark dataset shows 
that POERM has excellent performance and find interesting 
rules.

•Future work:

➢POERM for streaming data and big data.

➢Considering more complex data types 

➢Open-source code, datasets: 

➢SPMF data mining library (over 200 algorithms)
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http://www.philippe-fournier-viger.com/spmf/


Thanks for listening!
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The timestamps that are searched for a candidate ruleX→Y


