Under consideration for publication in Knowledge and Information
Systems

EFIM: A Fast and Memory Efficient
Algorithm for High-Utility Itemset
Mining

Souleymane Zida!, Philippe Fournier-Viger?, Jerry Chun-Wei Lin?,
Cheng-Wei Wu* and Vincent S. Tseng?

IDepartment of Computer Science, University of Moncton, Moncton NB, Canada;
2School of Natural Sciences and Humanities, Harbin Institute of Technology (Shenzhen),
Shenzhen GD, China;

3School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen),
Shenzhen GD, China;

4Department of Computer Science, National Chiao Tung University, Taiwan

Abstract. In recent years, high-utility itemset mining (HUIM) has emerged as an im-
portant data mining task. However, it remains computationally expensive both in terms
of runtime, and memory consumption. It is thus an important challenge to design more
efficient algorithms for this task. In this paper, we address this issue by proposing a
novel algorithm named EFIM (EFficient high-utility Itemset Mining), which introduces
several new ideas to more efficiently discover high-utility itemsets. EFIM relies on two
new upper-bounds named revised sub-tree utility and local utility to more effectively
prune the search space. It also introduces a novel array-based utility counting tech-
nique named Fast Utility Counting to calculate these upper-bounds in linear time and
space. Moreover, to reduce the cost of database scans, EFIM proposes efficient database
projection and transaction merging techniques named High-utility Database Projection
(HDP) and High-utility Transaction Merging (HTM), also performed in linear time. An
extensive experimental study on various datasets shows that EFIM is in general two to
three orders of magnitude faster than the state-of-art algorithms d?HUP, HUI-Miner,
HUP-Miner, FHM and UP-Growth+ on dense datasets and performs quite well on
sparse datasets. Moreover, a key advantage of EFIM is its low memory consumption.

Keywords: Pattern mining; Itemset mining, High-utility mining; Fast-utility count-
ing, High-utility database merging and projection.

Received Jan 28, 2016
Revised Jul 24, 2016
Accepted Aug 07, 2016

2 Zida et al
1. Introduction

Frequent Itemset Mining (FIM) (Agrawal et al, 1994) is a popular data mining
task. Given a transaction database, FIM consists of discovering frequent item-
sets. i.e. groups of items (itemsets) appearing frequently in a customer trans-
action database (Agrawal et al, 1994; Han et al, 2004; Han et al, 2004; Uno et
al, 2004; Zaki et al, 2000). FIM is essential to many applications. A classical
application of FIM is market basket analysis. In this context, frequent itemsets
are discovered and then used by retail store managers to co-promote frequently
purchased itemsets (Agrawal et al, 1994). Although much work has been done on
FIM, a fundamental limitation of FIM is that it assumes that each item cannot
appear more than once in each transaction, and that all items have the same
importance (weight, unit profit or value). These two assumptions often do not
hold in real applications. For example, consider a database of customer transac-
tions. It is common that a customer will buy several unit of the same product
(e.g. a customer may purchase several bottles of juice), and not all items have
the same unit profit (e.g. selling a diamond yields more profit than selling a
bottle of juice). Traditional FIM algorithms do not consider information about
the purchase quantities of items and unit profits of items. Thus, FIM algorithms
would discard this information and only find frequent itemsets, rather than find-
ing those yielding a high profit. As a result, many uninteresting frequent itemsets
generating a low profit may be discovered, and many rare itemsets generating a
high profit may be missed.

To address this issue, the problem of High-Utility Itemset Mining (HUIM) has
been defined (Ahmed et al, 2009; Fournier-Viger et al, 2014; Lan et al, 2014; Liu
et al, 2012; Krishnamoorthy et al, 2015; Liu et al, 2005; Song et al, 2014; Tseng
et al, 2013; Yun et al, 2014; Yao et al, 2004). As opposed to FIM (Agrawal et al,
1994; Han et al, 2004; Han et al, 2004; Uno et al, 2004), HUIM considers the case
where items can appear more than once in each transaction and where each item
has a weight (e.g. unit profit). The goal of HUIM is to discover itemsets having
a high-utility (a high importance, such as a high profit), that is High- Utility
Ttemsets. High-utility itemset mining has emerged as an important research topic
in data mining in recent years, and has inspired several other important data
mining tasks such as high-utility sequential pattern mining (Yin et al, 2012; Yin
et al, 2013; Zida et al, 2015). Beside market basket analysis, HUIM and its
variations have a wide range of applications such as mobile commerce (Tseng
et al, 2013), click stream analysis (Ahmed et al, 2010; Thilagu et al, 2012),
biomedicine (Liu et al, 2013) and cross-marketing (Ahmed et al, 2009; Tseng et
al, 2013).

The problem of HUIM is widely recognized as more difficult than the prob-
lem of FIM. In FIM, the downward-closure property states that the support
(frequency) of an itemset is anti-monotonic (Agrawal et al, 1994), that is su-
persets of an infrequent itemset are infrequent and subsets of a frequent itemset
are frequent. This property, also called the Apriori property, is very powerful to
prune the search space. But in HUIM, the utility of an itemset is neither mono-
tonic or anti-monotonic. That is, a HUI may have a superset or a subset having a
lower, equal or higher utility (Ahmed et al, 2009; Fournier-Viger et al, 2014; Liu
et al, 2012; Tseng et al, 2013). Thus, techniques that have been developed in
FIM to prune the search space based on the anti-monotonicity of the support
cannot be directly applied in HUIM, to prune the search space.

Many studies have been carried to develop efficient HUIM algorithms (Ahmed

EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining 3

et al, 2009; Fournier-Viger et al, 2014; Lan et al, 2014; Liu et al, 2012; Krish-
namoorthy et al, 2015; Liu et al, 2005; Song et al, 2014; Tseng et al, 2013; Yun
et al, 2014). A popular approach to HUIM is to discover high-utility itemsets
in two phases using the Transaction-Weigthed-Downward Closure model. This
approach is adopted by algorithms such as THUP (Ahmed et al, 2009), PB (Lan
et al, 2014), Two-Phase (Liu et al, 2005), BAHUI (Song et al, 2014), UP-Growth
and UP-Growth+ (Tseng et al, 2013) and MU-Growth (Yun et al, 2014). These
algorithms first generate a set of candidate high-utility itemsets by overestimat-
ing their utility in Phase 1. Then, in Phase 2, the algorithms scan the database
to calculate the exact utilities of candidates and filter low-utility itemsets. How-
ever, the two-phase model suffers from the problem of generating a huge amount
of candidates in Phase 1, and repeatedly scanning the database to calculate their
utility in Phase 2. Recently, to avoid the problem of candidate generation, more
efficient approaches were proposed in the HUI-Miner (Liu et al, 2012) and d?HUP
(Liu et al, 2012) algorithms to mine high-utility itemsets directly using a single
phase, thus avoiding the problem of candidate generation. The d2HUP and HUI-
Miner algorithms were reported to be respectively up to 10 and 100 times faster
than the state-of-the-art two-phase algorithms (Liu et al, 2012; Liu et al, 2012).
Then, improved versions of HUI-Miner named HUP-Miner (Krishnamoorthy et
al, 2015) and FHM (Fournier-Viger et al, 2014) were proposed. FHM and HUP-
Miner were shown to be up to 6 times faster than HUI-Miner, and are to our
knowledge the current best algorithms for HUIM. However, despite all these re-
search efforts, the task of high-utility itemset mining remains computationally
expensive both in terms of execution time and memory usage (Fournier-Viger et
al, 2014; Krishnamoorthy et al, 2015; Liu et al, 2012).

In this paper, we address this need for more efficient HUIM algorithms by
proposing a novel one-phase algorithm named EFIM (EFficient high-utility Item-
set Mining). Authors were invited to publish an extended version in Knowledge-
Based Systems. This latter introduces several novel ideas to greatly improve the
performance of the task of HUIM both in terms of memory and execution time.

The major contributions of this paper are the following.

— First, we propose a novel one-phase algorithm named EFIM. The overall design
of the EFIM algorithm is based on the principle that for each itemset in the
search space, all operations for that itemset should be performed in linear time
and space.

— Second, the EFIM algorithm introduces two efficient techniques to reduce the
cost of database scans named High-utility Database Projection (HDP) and
High-utility Transaction Merging (HTM). These techniques respectively per-
form database projections and merges transactions that are identical in each
projected database using a linear time and space implementation. Both tech-
niques reduce the size of the database as larger itemsets are explored, and thus
considerably decrease the cost of database scans.

— Third, the proposed EFIM algorithm includes two new upper-bounds on the
utility of itemsets named the revised sub-tree wtility and local utility to more
effectively prune the search space. We show that these upper-bounds are more
effective at pruning the search space than the TWU and remaining utility
upper-bounds, commonly used in previous work.

— Fourth, we introduce a novel array-based utility counting technique named
Fast Utility Counting (FAC) to calculate these upper-bounds in linear time
and space for all extensions of an itemset.

4 Zida et al

Table 1. A transaction database
TID Transaction

)
Ty (a,2)(c,6)(e,2)(g,5)
T3 (a,1)(b,2)(c,1)(d, 6)(e, 1)(f,5)
Ty (b7 4)(07 3)(d7 3)(67 1)
T5 (b7 2)(07 2)(67 1)(97 2)

— Fifth, we conduct an extensive experimental study to compare the performance
of EFIM with five state-of-the-art algorithms, namely d2HUP, HUI-Miner,
HUP-Miner, FHM and UP-Growth+. Both sparse and dense datasets having
various characteristics are used in the experiments in terms of transaction
length, number of distinct items and types of data. Results show that EFIM
is in general two to three orders of magnitude faster than these algorithms
on dense datasets, and performs quite well on sparse dataset. Moreover, a key
advantage of EFIM is its low memory consumption. It consumes up to eight
times less memory than the other algorithms.

Note that this paper is an extension of a conference paper published in the
proceedings of the 14th mexican international conference on artificial intelli-
gence (Zida et al, 2015)

The rest of this paper is organized as follows. Sections 2, 3, 4, 5 and 6 respec-
tively presents the problem of HUIM, the related work, the EFIM algorithm, the
experimental evaluation and the conclusion.

2. Problem Statement

The problem of high-utility itemset mining was introduced by Yao et al. (Yao et
al, 2004). It is defined as follows.

Definition 2.1 (Transaction database). Let I be a finite set of items (sym-
bols). An itemset X is a finite set of items such that X C I. A transaction
database is a multiset of transactions D = {T1,T>,...,T,} such that for each
transaction T, T. C I and T. has a unique identifier ¢ called its TID (Trans-
action ID). Each item i € I is associated with a positive number p(i), called its
external utility. The external utility of an item represents its relative importance
to the user. Fvery item i appearing in a transaction T. has a positive number
q(i,T.), called its internal utility. In the context of market basket analysis, the
external utility typically represents an item’s unit profit (for example, the sale
of 1 unit of bread yields a 1 dollar profit), while the internal utility represents
the purchase quantity of an item in a transaction (for example, a customer has
bought 2 units of bread).

Example 2.1. Consider the database in Table 1, which will be used as the
running example. It contains five transactions (77, T5...,T5). Transaction T5 in-
dicates that items a, ¢, e and g appear in this transaction with an internal utility
(e.g. purchase quantity) of respectively 2, 6, 2 and 5. Table 2 indicates that the
external utility (e.g. unit profit) of these items are respectively 5, 1, 3 and 1.

Definition 2.2 (Utility of an item). The utility of an item i in a transaction

EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining 5

Table 2. External utility values

Item a b ¢ d e f g

Profit 5 2 1 2 3 1 1

Table 3. High-Utility itemsets for minutil = 30

Ttemset Utility
{b,d} 30
{a,c,e} 31
{b,c,d} 34
{b,c,e} 31
{b,d, e} 36
{b,c,d, e} 40

{a,b,c, d, e, f} 30

T, is denoted as u(i,T.) and defined as p(i) x q(i,T.). It represents the profit
generated by the sale of the item i in the transaction T..

Example 2.2. The utility of item a in T is u(a,Tz) =5 x 2 = 10.

Definition 2.3 (Utility of an itemset in a transaction). The utility of an
itemset X in a transaction T, is denoted as u(X,T.) and defined as u(X,T,) =
Yiex uli, Te) if X C Te. Otherwise u(X,T.) = 0.

Example 2.3. The utility of the itemset {a, c} in Ty is u({a, c}, Tz) = u(a, Tz)+
u(e,To) =5 x2+1x6=16.

Definition 2.4 (Utility of an itemset in a database). The utility of an
itemset X is denoted as u(X) and defined as w(X) = 3 r, ¢ x) (X, T¢), where

9(X) is the set of transactions containing X. It represents the profit generated
by the sale of the itemset X in the transaction T,.

Example 2.4. The utility of the itemset {a,c} is w({a,c}) = u({a,c},T1) +
u({a,c}, To)+u({a,c}, T3) = u(a, Th) +u(c, T1) +ula, Ta) +u(c, Tz) + u(a, T5) +
u(e,T5)=5+14104+6+5+1=28.

Definition 2.5 (High-utility itemset). An itemset X is a high-utility item-
set if its utility u(X) is no less than a user-specified minimum utility threshold
minutil given by the user (i.e. u(X) > minutil). Otherwise, X is a low-utility
itemset.

Definition 2.6 (Problem definition). The problem of high-utility itemset
mining is to discover all high-utility itemsets, given a threshold minutil set by
the user. For the application of market basket analysis, the problem of high-utility
itemset mining can be interpreted as finding all sets of items that have generated
a profit not less than minutil.

Example 2.5. If minutil = 30, the high-utility itemsets in the database of the
running example are shown in Table 3.

It is interesting to note that FIM is the special case of the problem of HUIM

6 Zida et al

where all internal utility and external utility values are set to 1 (i.e. all purchase
quantities and unit profit values are assumed to be equal).

3. Related Work

HUIM is widely-recognized as a much harder problem than FIM since the utility
measure is not monotonic or anti-monotonic (Ahmed et al, 2009; Liu et al, 2005;
Tseng et al, 2013), i.e. the utility of an itemset may be lower, equal or higher
than the utility of its subsets. Thus, strategies used in FIM to prune the search
space based on the anti-monotonicity of the frequency cannot be applied to the
utility measure to discover high-utility itemsets. As a result, the first algorithm
for high-utility itemset mining named UMining, was not a complete algorithm (it
could miss some high-utility itemsets by pruning the search space). To circumvent
the fact that the utility is not anti-monotonic and to find the full set of high-
utility itemsets, several HUIM algorithms used a measure called the Transaction-
Weighted Utilization (TWU) measure (Ahmed et al, 2009; Lan et al, 2014; Liu
et al, 2005; Song et al, 2014; Tseng et al, 2013; Yun et al, 2014), which is an
upper-bound on the utility of itemsets, and is anti-monotonic. Calculating an
upper-bound such as the TWU on the utility of itemsets is interesting because if
that upper-bound is lower than minutil for some itemsets, it can be concluded
that these itemsets are not high-utility itemsets (since the TWU is an upper-
bound on their utility values). Thus, the TWU can be used to safely prune
itemsets in the search space. The TWU upper-bound is defined as follows.

Definition 3.1 (Transaction utility). The transaction utility of a transac-
tion T, is the sum of the utilities of items from T, in that transaction. i.e.
TU(T.) = > ,er, w(x,Te). In other words, the transaction utility of a trans-
action T, is the total profit generated by that transaction.

Definition 3.2 (Transaction weighted utilization). Let there be an itemset
X . The transaction-weighted utilization (TWU) of X is defined as the sum of the
transaction utilities of transactions containing X, and is denoted as TWU(X).
Formally, TWU(X) = 3 1, ¢ yx) TU(T:). The TWU represents the total profit

generated by the transactions containing the itemset X .

Example 3.1. The TU of transactions Ty,75,73,T, and T5 for our running
example are respectively 8, 27, 30, 20 and 11. The TWU of single items a, b, c,
d, e, f and g are respectively 65, 61, 96, 58, 88, 30, and 38. Consider item a.
TWU(a) =TU(Ty) + TU(T3) + TU(T5) = 8 + 27 + 30 = 65.

As previously mentioned, the TWU is interesting because it is an upper-
bound on the utility of itemsets, and can thus be used to prune the search space.
The following properties of the TWU have been proposed to prune the search
space.

Property 3.1 (Overestimation using the TWU). Let be an itemset X. The
TWU of X is no less than its utility (TWU(X) > u(X)). Moreover, the TWU
of X is no less than the utility of its supersets (TWU(X) > u(Y)VY D X). The
proof is provided in (Liu et al, 2005). Intuitively, since the TWU of X is the
sum of the profit of transactions where X appears, the TWU must be greater or
equal to the utility of X and any of its supersets.

EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining 7

Property 3.2 (Pruning the search space using the TWU). For any item-
set X, if TWU(X) < minutil, then X is a low-utility itemset as well as all its
supersets. This directly follows from the previous property (Liu et al, 2005).

Algorithms such as THUP (Ahmed et al, 2009), PB (Lan et al, 2014), Two-
Phase (Liu et al, 2005), BAHUI (Song et al, 2014), UP-Growth and UP-Growth-+
(Tseng et al, 2013) and MU-Growth (Yun et al, 2014) utilize Property 3.2 as main
property to prune the search space. They operate in two phases. In the first phase,
they identify candidate high-utility itemsets by calculating their TWUs to prune
the search space. If an itemset has a TWU greater than menutil, it may be a
high-utility itemsets, and is thus considered as a candidate. If an itemset has a
TWU lower than minutil, it is discarded, as it cannot be a high-utility itemset.
Then, in the second phase, these algorithms scan the database to calculate the
exact utility of all candidates to filter those that are low-utility itemsets. Among
the two-phase algorithms, UP-Growth is one of the fastest. It uses a tree-based
algorithm inspired by the FP-Growth algorithm for FIM (Han et al, 2004). It was
shown to be up to 1,000 times faster than Two-phase and IHUP. More recent two-
phase algorithms such as PB, BAHUI and MU-Growth, have introduced various
optimizations and different design but only provide a small speed improvement
over Two-Phase or UP-Growth (MU-Growth is only up to 15 times faster than
UP-Growth).

Recently, algorithms that mine high-utility itemsets using a single phase were
proposed to avoid the problem of candidate generation. These algorithms use
upper-bounds that are tighter than the TWU to prune the search space, and
can immediately obtain the exact utility of any itemset to decide if it should be
output. The d2HUP and HUI-Miner algorithms were reported to be respectively
up to 10 and 100 times faster than UP-Growth (Liu et al, 2012; Liu et al, 2012).
Then, improved versions of HUI-Miner named HUP-Miner (Krishnamoorthy et
al, 2015) and FHM (Fournier-Viger et al, 2014) were proposed to reduce the num-
ber of join operations performed by HUI-Miner. FHM introduces a novel strategy
that consists of precalculating the TWU of all pairs of items to prune the search
space, while HUP-Miner introduces the idea of partitioning the database, and
a mechanism called LA-Prune to stop calculating the upper-bound of an item-
set early. FHM and HUP-Miner were shown to be up to 6 times faster than
HUI-Miner, and are to our knowledge the current best algorithms for HUIM.
The HUI-Miner, HUP-Miner and FHM, are vertical algorithms. They associate
a structure named wutility-list (Fournier-Viger et al, 2014; Liu et al, 2012) to
each itemset. Utility-lists allow calculating the utility of an itemset by mak-
ing join operations with utility-lists of smaller itemsets. Moreover, utility-lists
also allow calculating an upper-bound called remaining utility on the utilities of
its supersets, to prune the search space. This upper-bound is equivalent to the
upper-bound used by the d?HUP algorithm. Similarly to the TWU, the remain-
ing utility upper-bound is used to prune the search space.. The next paragraphs
introduces this upper-bound and the utility-list structure. Then, an explanation
of how it is used to prune the search space is provided.

Definition 3.3 (Remaining utility). Let = be a total order on items from I
(e.g. the lexicographical order), and X be an itemset. The remaining utility of
X in a transaction T, is defined as re(X,Tc) = 3 icr nivaovaex U(is Te). Since
high-utility itemset mining algorithms append items one at a time to itemsets to
generate larger itemsets by following the total order -, the remaining utility of
an itemset X in a transaction T, can be interpreted as the amount of profit that

8 Zida et al

the itemset X could gain if other items from T, were appended to X (according
to the > order).

Definition 3.4 (Utility-list). The utility-list of an itemset X in a database D
is a set of tuples such that there is a tuple (c,iutil, rutil) for each transaction
T. containing X. The iutil and rutil elements of a tuple respectively are the
utility of X in T, (u(X,T.)) and the remaining utility of X in T, (re(X,T,)).
The iutil element of an itemset X in a transaction T, can be interpreted as
the profit generated by X in that transaction, while the remaining utility of X
in T, represents the profits of other items that could be appended to X in that
transaction when following the = order.

Example 3.2. For the running example described in this paper, assume that >
is the lexicographical order (i.e. e = d > ¢ > b = a). The utility-list of {a, e} is
{(T,16,5), (T5,8,5)}.

To discover high-utility itemsets, HUI-Miner, HUP-Miner and FHM perform
a database scan to create the utility-lists of patterns containing single items.
Then, utility-lists of larger patterns are constructed by joining utility-lists of
smaller patterns (see (Liu et al, 2012; Krishnamoorthy et al, 2015) for details).
Pruning the search space is done using the following properties.

Definition 3.5 (Remaining utility upper-bound). Let X be an itemset. Let
the extensions of X be the itemsets that can be obtained by appending an item
1 to X such that i = x, Vo € X. The remaining utility upper-bound of X is
defined as reu(X) = w(X) + re(X), and can be computed by summing the iutil
and rutil values in the utility-list of X. The proof that the sum of iutil and rutil
values of an itemset X is an upper-bound on the utility of X and its extensions
is provided in (Liu et al, 2012). Intuitively, this upper-bound is the total profit
generated by X (the iutil values) plus the sum of the profit for items that could
still be appended to X when following the = order for appending items (the sum
of rutil values).

Example 3.3. For example, re({a,e}) = u({a,e})+re({a,e}) = u({a,e}, Tn)+
re({a,e}, To) + u({a, e}, T3) + re({a, e}, T5) = (16 + 8) + (8 + 5) = 37. Since this
sum is an upper-bound on the utility of {a,e} and its extensions, it can be
concluded that the utility of {a, e} and its extensions cannot be greater than 37.

Property 3.3 (Pruning the search space using utility-lists). If reu(X) <
minutil, then X is a low-utility itemset as well as all its extensions (Liu et
al, 2012). . These latter can thus be pruned. This property directly follows from
the previous definition. This property is used by the d?HUP, HUI-Miner and
FHM algorithms to prune the search space.

One-phase algorithms are faster than previous algorithms because they dis-
cover itemsets in one phase, thus avoiding the problem of candidate generation
found in two-phase algorithms. Moreover, one-phase algorithms have introduced
the remaining utility upper-bound, which is a tighter upper-bound on the utility
of itemsets than the TWU. Thus, it can be used to prune a larger part of the
search space. However, mining HUIs remains a very computationally expensive
task both in terms of memory consumption and execution time. For example,
HUI-Miner, HUP-Miner, and FHM still suffer from a high space and time com-
plexity to process each itemset in the search space. The size of each utility-list

EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining 9

is in the worst case O(n), where n is the number of transactions (when a utility-
list contains an entry for each transaction). Creating the lists for itemsets can
thus require a significant amount of memory, since more than one list need to
be maintained in memory during the depth-first search. Moreover, in terms of
execution time, the complexity of building a utility-list is also high (Fournier-
Viger et al, 2014). In general, it requires to join three utility-lists of smaller
itemsets. A naive implementation requires O(n?) time in th eworst case, while
a better implementation may require O(3n) time. FHM and HUP-Miner intro-
duce strategies to reduce the number of join operations performed by HUI-Miner.
However, joining utility-lists remains the main performance bottleneck in terms
of execution, and storing utility-lists remains the main issue in terms of memory
consumption (Fournier-Viger et al, 2014). Lastly, another limitation of list-based
algorithms such as HUI-Miner and HUP-Miner is that they may consider item-
sets not appearing in the database, as they explore the search space of itemsets
by combining smaller itemsets, without scanning the database. The d?HUP al-
gorithm (Liu et al, 2012) uses a pattern-growth approach to avoid considering
itemsets not appearing in the database, but uses a hyper-structure based ap-
proach that can still consume quite a significant amount of memory (as it will
be shown in the experimental evaluation of this paper).

To summarize, all the above algorithms except Two-Phase utilize a depth-
first search to explore the search space of high-utility itemsets, as it is generally
more efficient than using a breadth-first search in the field of itemset mining
(Han et al, 2004; Han et al, 2004; Uno et al, 2004; Zaki et al, 2000). High-utility
itemset mining algorithms differ in many aspects: the type of database repre-
sentation that is used (vertical vs horizontal), whether they perform a single
phase or two phases, what kind of data structure is used to maintain infor-
mation about transactions and itemsets (e.g. hyperlink structures, utility-lists,
tree-based structures), the choice of upper-bound(s) and strategies to prune the
search space, and how these upper-bounds are calculated.

4. The EFIM Algorithm

As stated in the introduction, the goal of this paper is to improve the efficiency
of HUIM. In this section, we present our proposal, the EFIM algorithm. Four
key design ideas have guided the overall design of EFIM:

— It is necessary to design a one-phase algorithm to avoid the problem of candi-
date generation of two-phase algorithms.

— It is necessary to use a ”pattern-growth approach” to avoid considering pat-
terns that may not appear in the database, and techniques should be used to
reduce the cost of database scans.

— It is necessary to use a tighter upper-bound to prune the search space of item-
sets more efficiently. This upper-bound should be tighter than the remaining
utility upper-bound used in the state-of-the-art algorithms.

— It is necessary to perform low-complexity operations for processing each item-
set in the search space, both in terms of space and time. In EFIM, we use the
very strict constraint that for each itemset in the search space, all operations
for that itemset should be performed in linear time and space.

This section is organized as follows. Subsection 4.1 introduces preliminary

10 Zida et al

//\\
//\ /\ \

{a,b} {a,c} {a,d} {b,c} {b,d} {c,d}
{a,b,c} {a,b,d} {a,c,d} {b,c,d}
{a,b,c,d}

Fig. 1. Set-enumeration tree for I = {a,b, ¢, d}

definitions related to the depth-first search of itemsets. Subsection 4.2 and 4.3 re-
spectively explain how EFIM reduces the cost of database scans using two novel
efficient techniques named High-utility Database Projection (HDP) and High-
utility Transaction Merging (HTM), performed in linear time and space. Subsec-
tion 4.4 presents two new upper-bounds used by EFIM to prune the search space.
Subsection 4.5 presents a new array-based utility counting technique named Fast
Utility Counting to efficiently calculate these upper-bounds in linear time and
space. Finally, subsection 4.6 gives the pseudocode of EFIM, discusses the over-
all complexity of the algorithm, and briefly presents an example of how the
algorithm is applied for the running example.

4.1. The Search Space

Let > be any total order on items from I. According to this order, the search
space of all itemsets 2/ can be represented as a set-enumeration tree (Rymon
et al, 1992). For example, the set-enumeration tree of I = {a,b,c,d} for the
lexicographical order is shown in Fig. 1. The EFIM algorithm explores this search
space using a depth-first search starting from the root (the empty set). During
this depth-first search, for any itemset o, EFIM recursively appends one item
at a time to a according to the > order, to generate larger itemsets. In our
implementation, the > order is defined as the order of increasing TWU because it
generally reduces the search space for HUIM (Ahmed et al, 2009; Fournier-Viger
et al, 2014; Liu et al, 2012; Tseng et al, 2013). However, we henceforth assume
that > is the lexicographical order in the running example, to make the examples
easier to understand, for the convenience of the reader. We next introduce three
definitions related to the depth-first search exploration of itemsets.

Definition 4.1 (Items that can extend an itemset). Let be an itemset a.
Let E(a) denote the set of all items that can be used to extend o according to
the depth-first search, that is E(a) = {z|z € I A z > z,Vz € a}.

EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining 11

Definition 4.2 (Extension of an itemset). Let be an itemset a. An itemset
Z is an extension of « (appears in a sub-tree of « in the set-enumeration tree)

if Z=aUW for an itemset W € 28(®) such that W # (.

Definition 4.3 (Single-item extension of an itemset). Let be an itemset
a. An itemset Z is a single-item extension of « (is a child of « in the set-
enumeration tree) if Z = aU{z} for an item z € E(a).

Example 4.1. Consider the database of our running example and o = {d}. The
set E(a) is {e, f,g}. Single-item extensions of « are {d,e}, {d, f} and {d, g}.
Other extensions of a are {d, e, f}, {d, f,g} and {d,e, f, g}.

4.2. Reducing the Cost of Database Scans using High-utility
Database Projection (HDP)

As we will later explain, EFIM performs database scans to calculate the utility
of itemsets and upper-bounds on their utility. To reduce the cost of database
scans, it is desirable to reduce the database size. In EFIM this is performed by
a novel technique called High-utility Database Projection (HDP).

HDP is based on the observation that when an itemset « is considered during
the depth-first search, all items x ¢ FE(«) can be ignored when scanning the
database to calculate the utility of itemsets in the sub-tree of «, or upper-bounds
on their utility. A database without these items is called a projected database.

Definition 4.4 (Projected transaction). The projection of a transaction T'
using an itemset « is denoted as a-T and defined as o-T = {i|i € T Ni € E(a)}.

Definition 4.5 (Projected database). The projection of a database D using
an itemset « is denoted as a-D and defined as the multiset o-D = {a-T |T €
D Aa-T #0}.

Example 4.2. Consider database D of the running example and o = {b}. The
projected database a-D contains three transactions: a-T3 = {c,d, e, f}, a-Ty =
{¢,d,e} and a-T5 = {c, e, g}.

Database projections generally greatly reduce the cost of database scans since
transactions become smaller as larger itemsets are explored. However, an im-
portant issue is how to implement database projection efficiently. A naive and
inefficient approach is to make physical copies of transactions for each projec-
tion. The efficient approach used in EFIM called HDP is performed as follows.
It requires to sort items in each transaction in the original database accord-
ing to the > total order beforehand. Then, each projection is performed as a
pseudo-projection, that is each projected transaction is represented by an offset
pointer on the corresponding original transaction. The complexity of calculating
the projection a-D of a database D is linear in time and space (O(nw) where n
and w are respectively the number of transactions and the average transaction
length). However, as larger itemsets are explored, the size of projected databases
decrease.

The proposed database projection technique is a generalization of the concept
of database projection used in frequent pattern mining (Pei et al, 2004; Uno et
al, 2004) for the case of transactions with internal/external utility values. Note
that FP-growth based HUIM algorithms (Ahmed et al, 2009; Lan et al, 2014;
Tseng et al, 2013; Yun et al, 2014) and hyper-link based HUIM algorithms (Liu

12 Zida et al

et al, 2012) also perform some form of projections but differently than in the
EFIM algorithm since they use different database representations (fp-tree and
hyperlink representations, respectively).

4.3. Reducing the Cost of Database Scans by High-utility
Transaction Merging (HTM)

To further reduce the cost of database scans, EFIM also introduces an efficient
transaction merging technique named High-utilty Transaction Merging (HTM).
HTM is based on the observation that transaction databases often contain iden-
tical transactions. The technique consists of identifying these transactions and
then replace them with single transactions, while combining their utilities.

Definition 4.6 (Identical transactions). A transaction T, is identical to a
transaction Ty, if it contains the same items as Ty (i.e. T, = Typ). It is important
to mote that in this definition, two identical transactions are not required to have
the same internal utility values.

Definition 4.7 (Transaction merging). Transaction merging consists of re-
placing a set of identical transactions Try,Tra, ... Try in a database D by a single
new transaction Thy = Try = Tre = ... = Try, where the quantity of each item
i € Ty is defined as q(4,Tar) = Dy 4 @03, Try).

Merging identical transactions reduce the size of the database. But this reduc-
tion is small if the database contains few identical transactions. For example, in
the database of the running example, no transactions can be merged. To achieve
higher database reduction, we also merge transactions in projected databases.
This generally achieves a much higher reduction because projected transactions
are smaller than original transactions, and thus are more likely to be identical.

Definition 4.8 (Projected transaction merging). Projected transaction
merging consists of replacing a set of identical transactions Try,Tro, .. Try in
a projected database a-D by a single new transaction Thy = Tri = Try =
. = Try, where the quantity of each item i € Ty is defined as q(i,Th) =
Zk:l...m q(ZVTTk)

Example 4.3. Consider database D of our running example and «a = {c}. The
projected database a-D contains transactions a-T7 = {d}, a-To = {e, g}, - T3 =
{d,e, f}, a-Ty = {d,e} and a-Ts = {e, g}. Transactions a-T5 and a-T5 can be
replaced by a new transaction Ty = {e, g} where g(e, Tps) = 3 and q(g, Th) = 7.

Transaction merging is obviously desirable. However, a key problem is to
implement it efficiently. The naive approach to identify identical transactions
is to compare all transactions with each other. But this is inefficient because it
requires O((nw)?) time. To find identical transactions in O(nw) time, we propose
the following novel approach. We initially sort the original database according
to a new total order > on transactions. Sorting is achieved in O(nw log(nw))
time. However, this cost is generally negligible compared to the other operations
performed by the algorithm because it is performed only once.

Definition 4.9 (Total order on transactions). The > order is defined as
the lexicographical order when the transactions are read backwards. Formally,
let there be two transactions T, = {i1,i2,...im} and Ty = {j1,72,..-Jr}- The

EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining 13

total order =1 is defined by four cases. The first case is that Ty, = Ty if both
transactions are identical and the TID of Ty is greater than the TID of T,. The
second case is that Ty =7 Ty if kK > m and ipm—_p = jr—o for any integer x such
that 0 < x < m. The third case is that Ty, =1 T, if there exists an integer x such
that 0 < z < min(m, k), where ji—z = tm—g aNd iym_y = Jr—y for all integer y
such that x <y < min(m, k). The fourth case is that otherwise T, =1 Ty.

Example 4.4. Consider three transactions T, = {b,c}, T, = {a,b,c} and T, =
{a,b, e}. We have that T, >p T, >r T,.

A database sorted according to the 7 order provides the following property.

Property 4.1 (Transaction order in an >p sorted database). Let there
be a >7 sorted database D and an itemset «. Identical transactions appear
consecutively in the projected database a-D.

Proof. Because (1) transactions are sorted in lexicographical order when read
backwards and (2) projections always removes the smallest items of a transaction
according to the lexicographical order, it is clear that the property holds. [

Using the above property, all identical transactions in a (projected) database
can be identified by only comparing each transaction with the next transaction
in the database. Thus, a (projected) database can be scanned only once to merge
all identical transactions in the database. During this scan, each transaction is
only compared with the next one to determine if they should be merged. Thus,
the number of comparisons is n — 1, where n is the number of transactions. Each
comparison between two transactions can be performed in linear time using
a two-way comparison. Thus, the overall cost of merging all transactions in a
projected database is O(nw)

This efficient implementation of transaction merging has to our knowledge not
been used in previous work. In particular, it is interesting to note that transaction
merging as proposed in EFIM is not performed in any other one-phase HUIM
algorithms. The reason is that it cannot be implemented efficiently in utility-list
based algorithms such as HUP-Miner, HUI-Miner and FHM, because these latter
use a vertical database representation, rather than a horizontal representation.
Moreover, transaction merging cannot be implemented easily in hyperlink-based
algorithms such as d?HUP, due to the representation of projected databases
using hyperlinks over the original database.

4.4. Pruning the Search Space using Sub-tree Utility and
Local Utility Upper-Bounds

The previous subsection has explained techniques used in the proposed EFIM
algorithm for reducing the cost of database scans. This subsection now discusses
another key issue for designing an efficient HUIM algorithm, which is to design
an effective mechanism for pruning itemsets in the search space. For this purpose,
we introduce in EFIM two new upper-bounds on the utility of itemsets named
revised sub-tree utility and local utility. As we will explain, these upper-bounds
have similarities to the remaining utility and TWU upper-bounds. But a key dif-
ference with these upper-bounds is that the proposed upper-bounds are defined
w.r.t the sub-tree of an itemset « in the search-enumeration tree. Moreover, as we
will explain, some items are ignored when calculating these upper-bounds. This

14 Zida et al

makes the proposed upper-bounds more tight, and thus the proposed algorithm
more effective at pruning the search space.
The proposed local utility upper-bound is defined as follows.

Definition 4.10 (Local utility). Let be an itemset o and an item z € E(«).
The Local Utility of z w.r.t. o is lu(a, 2) = Y opegaugsy) (W, T) + re(e, T)).

Example 4.5. Consider the running example and «
lu(a,c) = (8 +27+ 30) = 65, lu(wo,d) = 30 and lu(a, €)

{a}. We have that
o7.

The following theorem of the local utility is proposed in EFIM to prune the
search space.

Property 4.2 (Overestimation using the local utility). Let be an itemset
a and an item z € E(«). Let Z be an extension of « such that z € Z. The
relationship lu(«, z) > u(Z) holds.

Proof. Let Y denote the itemset o U {z}. The utility of Z is equal to u(Z) =
ETEQ(Z) w(Z,T) = ZTeg(Z) [u(a, T) + u(Z \ 0, T)]. The local-utility of o w.r.t
to z is equal to lu(a, z) =

Yregy) ula, T) +re(a, T)]. Because g(Z) € g(Y) and Z\Y C E(a), it follows
that w(Z \ o, T) < re(a,T) and thus that lu(a, z) > w(Z). O

Example 4.1 (Pruning an item in all sub-trees using the local utility).
Let be an itemset o and an item z € E(a). If lu(a, 2) < minutil, then all ex-
tensions of a containing z are low-utility. In other words, item z can be ignored
when exploring all sub-trees of a.

Thus, by using Theorem 4.1, some items can be pruned from all sub-trees of
an itemset «, which reduces the number of itemsets to be considered. To further
reduce the search space, we also identify whole sub-trees of a that can be pruned
by proposing another upper-bound named the sub-tree utility, which is defined
as follows.

Definition 4.11 (Sub-tree utility). Let be an itemset o and an item z that
can extend o according to the depth-first search (z € E(«a)). The Sub-tree Utility
of z w.r.t. a is

su(a, 2) = X oregaugzy) W@ T) +u(z,T) + Xicrnic paugzy wi, T)]-

Example 4.6. Consider the running example and o = {a}. We have that
su(a,e) = (54+14+2) +(10+6 + 11) +(5 + 1 + 20) = 61, su(a,d) = 25 and
su(a, e) = 34.

The following theorem of the sub-tree utility is proposed in EFIM to prune
the search space.

Property 4.3 (Overestimation using the sub-tree utility). Let be an item-
set @ and an item z € E(«). The relationship su(a, z) > u(a U {z}) holds. And
more generally, su(a, z) > u(Z) holds for any extension Z of aU {z}.

Proof. Suppose « is an itemset and Y = aU{z} is an extension of . The utility
of Y is equal to u(Y) = 3 7 vy u(Y,T). The sub-tree utility of o w.r.t. z is
equal to

su(a, 2) = D regvy W, T) +u(2,T) + X icrnic paugzy) 46 T)]

= 2regv) WY T+ regvy Zicrniesaugzy) Wi T) 2 Y pe gy w(Y, T). Thus,

EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining 15

su(a, z) > u(Y).

Now let’s consider another itemset Z that is an extension of Y. The utility of Z is
equal to w(Z) = Y oreyz) WY, T) + X reyz)y w(Z \ Y, T). Because g(Z) C g(Y)
and Z\'Y C E(a), it follows that su(w,z) > u(Z). 0O

Example 4.2 (Pruning a sub-tree using the sub-tree utility). Let be an
itemset o and an item z € E(a). If su(o, z) < minutil, then the single item
extension a U {z} and its extensions are low-utility. In other words, the sub-tree
of a U{z} in the set-enumeration tree can be pruned.

The relationships between the proposed upper-bounds and the main ones
used in previous work are the following.

Property 4.4 (Relationships between upper-bounds). Let be an itemset
a, an item z and an itemset Y = aU{z}. The relationship TWU(Y) > lu(«, z) >
reu(Y) = su(a, z) holds.

Proof. TWU(Y) = Y peyv) TU(T) and lu(aU{z}) = 3 re vy lule, T) + re(e,
T)]. Since u(a, T) 4+ re(a,T) cannot be greater than TU(T') for any transaction
T, the relationship TWU(Y) > lu(a U {z}) holds. Moreover, because reu(Y) =
Yregry WY, T) +re(aU{z},T)] and re(a, T') = re(a U {z},T), the relation-
ship lu(e, z) = reu(Y) holds. Lastly, by definition su(c, 2) = > pe vy [u(Y;T)
+Zi€T/\iEE(Y) u(i,T)] and re(Y,T) is equal to ZieT/\ieE(Y) u(i,T), the rela-
tionship reu(Y) = su(a, z) holds. [J

Given, the above relationship, it can be seen that the proposed local utility
upper-bound is a tighter upper-bound on the utility of ¥ and its extensions
compared to the TWU, which is commonly used in two-phase HUIM algorithms.
Thus the local utility can be more effective for pruning the search space.

About the su upper-bound, one can ask what is the difference between this
upper-bound and the reu upper-bound of HUI-Miner and FHM since they are
mathematically equivalent. The major difference between the remaining-utility
upper bound and the proposed su upper-bound is that the su upper-bound is
calculated when the depth-first search is at itemset « in the search tree rather
than at the child itemset Y. Thus, if su(«, z) < minutil, EFIM prunes the whole
sub-tree of z including node Y rather than only pruning the descendant nodes
of Y. This is illustrated in Fig. 2, which compares the nodes pruned in the sub-
tree of Y using the su and reu upper-bounds. Thus, as explained here, using su
instead of reu upper-bound, is more effective for pruning the search space.

Moreover, we make the su upper-bound even tighter by redefining it as fol-
lows. This leads to the final revised sub-tree wutility upper-bound used in the
proposed EFIM algorithm.

Definition 4.12 (Primary and secondary items). Let be an itemset . The
primary items of « is the set of items defined as Primary(a) = {z|z € E(a) A
su(a, z) > minutil}. The secondary items of « is the set of items defined as
Secondary(a) = {z|z € E(a) ANlu(a, z) > minutil}. Because lu(a, z) > su(a, z),
Primary(a) C Secondary(a).

Example 4.7. Consider the running example and o = {a}. Primary(a) =
{c,e}. Secondary(a) = {¢,d,e}. This means that w.r.t. a, only the sub-trees
rooted at nodes avU {c¢} and o U {e} should be explored. Furthermore, in these
subtrees, no items other than ¢, d and e should be considered.

16 Zida et al

A) Pruning using the su upper-bound B) Pruning using the reu upper-bound
If su(a U {z}) < minutil If reu(a U {z}) < minutil

pruned
nodes

D CD GO e
nodes
Fig. 2. Comparison of the su and reu upper-bounds

The redefined (tighter) su upper-bound is defined as follows.

Definition 4.13 (Redefined Sub-tree utility). Let be an itemset a and an
item z. The redefined sub-tree utility of item z w.r.t. itemset « is defined as:

su(a, 2) = Do regiantep W T) +u(z,T) + XiernicBauizin
ieSecondary(a)u(i7 T)] .

The difference between the su upper-bound and the redefined su upper-bound
is that in the latter, items not in Secondary(«) will not be included in the
calculation of the su upper-bound. Thus, this redefined upper-bound is always
less than or equal to the original su upper-bound and the reu upper-bound. It
can be easily proven that the redefined su upper-bound preserves the pruning
Theorem of the su upper bound. In the rest of the paper, it is assumed that the
redefined su upper-bound is used instead of the original su upper-bound.

We also illustrate the difference between the reu and (revised) su upper-
bound with an example.

Example 4.8. Consider the lexicographic order, minutil = 40, and the item-
set {b}. The utility of {b} is 16 but it is necessary to explore its extensions
since su({b}) > minutil. The itemset {b} can be extended with items E({b}) =
{c,d,e, f,g}. The local utilities of these items are respectively: lu(«, {c}) = 56,
lu(a, {d}) = 45, lu(a, {e}) = 56, lu(a, {f}) = 25, and lu(a, {g}) = 11. Because
f and g have local utilities lower than minutil, they will be excluded from the
calculation of the (revised) sub-tree utility of any extensions of b. For example,
consider itemset {b,d} that extends itemset {b}. The remaining utility of {b, d}
is reu({b,d}) = 42, while the sub-tree utility is su({b,d}) = 36. By using the
sub-tree utility for pruning the search space, the whole sub-tree of {b,d} can
be pruned (including node {b, d}) because su({b,d}) < minutil, while using the
remaining utility, {b,d} and all its child nodes will need to be explored, be-
cause reu({b,d}) > minutil. This simple example shows the effectiveness of the
sub-tree utility for pruning the search space.

Lastly, it is interesting to note that the redefined su upper-bound cannot
be applied in vertical algorithms such as HUI-Miner and FHM, since transac-
tions are not represented explicitly (these algorithms do not perform database
scans once their utility-lists have been built). These latter algorithms store the

EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining 17

remaining utility of an itemset in each transaction in their utility-list structure
but cannot reduce the remaining utility at further stages of the depth-first search,
as it would require to scan the original transactions. Having explained the pro-
posed upper-bounds used in the EFIM algorithm, the next section explains the
novel method used in EFIM to calculate its upper-bounds efficiently both in
terms of time and space, using its horizontal database representation.

4.5. Calculating Upper-Bounds Efficiently using Fast Utility
Counting (FUC)

In the previous subsection, we introduced two new upper-bounds on the utility
of itemsets to prune the search space. We now present a novel efficient array-
based approach to compute these upper-bounds in linear time and space that
we call Fast Utility Counting (FUC). It relies on a novel array structure called
utility-bin.

Definition 4.14 (Utility-Bin). Let be the set of items I appearing in a database
D. A utility-bin array U for a database D is an array of length |I|, having an
entry denoted as Ulz] for each item z € I. Each entry is called a utility-bin and
is used to store a utility value (an integer in our implementation, initialized to

0).

A utility-bin array can be used to efficiently calculate the following upper-
bounds in O(n) time (recall that n is the number of transactions), as follows.

Calculating the TWU of all items. A utility-bin array U is initialized.
Then, for each transaction T of the database, the utility-bin U|[z] for each item
z € T is updated as Ulz] = U[z] + TU(T). At the end of the database scan, for
each item k € I, the utility-bin U[k] contains TWU (k).

Example 4.9. For example, consider the database of the running example. In
this example I = {a,b,c,d, e, f, g}. An utility-bin array U is constructed with 7
bins since there are 7 items, and it is filled with zeros, as illustrated in Fig. 3 A.
Then, the database is scanned one transaction at a time. The first transaction
is T1, which has a transaction utility of 8. Because items a, ¢, and d appear in
transaction T3, the value 8 is added to the utility-bins Ula], Ulc], and U[d]. The
result is shown in Fig. 3 B. Then the next transaction 75 is read, which has a
transaction utility of 27. Because items a, ¢, e, and g appear in transaction Tb,
the value 27 is added to the utility-bins Ula], Ulc], and U[d]. The result is shown
in Fig. 3 C. Then, the same process is repeated for the remaining transactions.
The content of the utility-bin array after reading transactions T3, Ty, and T5 are
respectively shown in Fig. 3 D, E, and F. After the last transaction has been
read, it is found that the TWU of items a, b, ¢, d, e, f, and g are respectively 65,
61, 96, 58, 88, 30, and 38, according to their respective entries in the utility-bin
array.

Calculating the sub-tree utility w.r.t. an itemset a. Similarly, a utility-
bin array can also be used to calculate the sub-tree utility efficiently. A utility-bin
array U is first initialized by filling all bins with zeros. Then, for each transaction
T of the database, the utility-bin U|[z] for each item z € T' N E(«) is updated
as Ulz] = Ule] + u(a, T) + u(z, 1) 4+ 322 crnis znicSecondary(a) W(E;). When the
last transaction has been processed, we have U[k] = su(a, k) Vk € E(«).

Calculating the local utility w.r.t. an itemset «. A utility-bin array

18 Zida et al

Ula] U[b] Ulc] U[d] Ule] U[f] Ulg]

A) Initialization ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘

B)Afterreading‘8‘0‘8‘8‘0‘0‘0‘

transaction T,

C) After reading ‘ 35 ‘ 0 ‘ 35 ‘ 8 ‘ 27‘ 0 ‘ 27 ‘
transaction T,

D) After reading
transaction Ty

‘65‘30‘65‘38‘57‘30‘27‘

E) After reading

transaction T, ‘ 65 ‘ 50 ‘ 85 ‘ 58 ‘ 7 ‘ 30 ‘ 27 ‘

F) After reading
transaction Tg

‘65‘61‘96‘58‘88‘30‘38‘

Fig. 3. Calculating the TWU using a utility-bin array

U is initialized by filling all bins with zeros. Then, for each transaction T' of
the database, the utility-bin U[z] for each item z € T N E(«) is updated as
Ulz] = Ulz] + u(e, T) + re(a, T'). When the last transaction has been processed,
we have Ulk] = lu(a, k) Yk € E(a).

This approach for calculating upper-bounds is highly efficient. For an item-
set «, this approach allows to calculate the three upper-bounds for all single
extensions of « in linear time by performing a single (projected) database scan.
In comparison, in the HUI-Miner, FHM, and HUP-Miner algorithms, calculating
upper-bounds is done one itemset at a time by performing a costly join operation
of up to three utility-list for each itemset, which may use up to O(3n) time.

In terms of memory, it can be observed that utility-bins are a very compact
data structure (O(|I]) size). To utilize utility-bins more efficiently, we propose
three optimizations.

— First, all items in the database are renamed as consecutive integers. Then, in
a utility-bin array U, the utility-bin U[i] for an item ¢ is stored in the i-th
position of the array. This allows to access the utility-bin of an item in O(1)
time.

— Second, it is possible to reuse the same utility-bin array multiple times by
reinitializing it with zero values before each use. This avoids creating multiple
arrays and thus greatly reduces memory usage. In our implementation, only
three utility-bin arrays are created, to respectively calculate the TWU, sub-
tree utility and local utility. This is one of the reasons why the memory usage
of EFIM is very low compared to other algorithms, as it will be shown in the
experimental section. For example, the same utility-bin array can be reused
to calculate the sub-tree utility for any itemset in the search space. Thus, no
additional memory is required during the depth-first search to calculate the
upper-bounds once the three initial utility-bin arrays have been created.

— Third, when reinitializing a utility-bin array to calculate the sub-tree utility
or the local utility of single-item extensions of an itemset «, only utility-bins
corresponding to items in F(«) are reset to 0, for faster reinitialization of the
utility-bin array.

EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining 19
4.6. The Proposed Algorithm

In this subsection, we present the EFIM algorithm, which combines all the ideas
presented in the previous section.

The main procedure (Algorithm 1) takes as input a transaction database and
the minutil threshold. The algorithm initially considers that the current itemset
« is the empty set (line 1). The algorithm then scans the database once to
calculate the local utility of each item w.r.t. o, using a utility-bin array (line 2).
Note that in the case where o = (), the local utility of an item is its TWU. Then,
the local utility of each item is compared with minutil to obtain the secondary
items w.r.t to «, that is items that should be considered in extensions of « (line
3). Then, these items are sorted by ascending order of TWU and that order is
thereafter used as the > order (as suggested in (Ahmed et al, 2009; Fournier-
Viger et al, 2014; Liu et al, 2012)) (line 4). The database is then scanned once
to remove all items that are not secondary items w.r.t to « since they cannot
be part of any high-utility itemsets by Theorem 4.1 (line 5). At the same time,
items in each transaction are sorted according to >, and if a transaction becomes
empty, it is removed from the database. Then, the database is scanned again to
sort transactions by the =1 order to allow O(nw) transaction merging, thereafter
(line 6). Then, the algorithm scans the database again to calculate the sub-tree
utility of each secondary item w.r.t. o, using a utility-bin array (line 7 and).
Thereafter, the algorithm calls the recursive procedure Search to perform the
depth first search starting from « (line 9).

Algorithm 1: The EFIM algorithm

input : D: a transaction database, minutil: a user-specified threshold
output: the set of high-utility itemsets

1 a=10

2 Calculate lu(a,) for all items ¢ € I by scanning D, using a utility-bin
array;

3 Secondary(a) = {ili € I Alu(a,i) > minutil};

4 Let > be the total order of TWU ascending values on Secondary(«);

5 Scan D to remove each item i & Secondary(a) from the transactions, sort
items in each transaction according to >, and delete empty transactions;

6 Sort transactions in D according to >r;

7 Calculate the sub-tree utility su(c,) of each item i € Secondary(«) by
scanning D, using a utility-bin array;

8 Primary(a) = {i|li € Secondary(a) A su(a,i) > minutil};

9 Search (a, D, Primary(a), Secondary(a), minutil);

The Search procedure (Algorithm 2) takes as parameters the current itemset
to be extended «, the a projected database, the primary and secondary items
w.r.t o and the minutil threshold. The procedure performs a loop to consider
each single-item extension of « of the form 8 = a U {i}, where i is a primary
item w.r.t a (since only these single-item extensions of « should be explored
according to Theorem 4.2) (line 1 to 9). For each such extension S, a database
scan is performed to calculate the utility of 8 and at the same time construct
the 8 projected database (line 3). Note that transaction merging is performed
whilst the 8 projected database is constructed. If the utility of 8 is no less than

20 Zida et al

minutil, 8 is output as a high-utility itemset (line 4). Then, the database is
scanned again to calculate the sub-tree and local utility w.r.t 8 of each item z
that could extend § (the secondary items w.r.t to «), using two utility-bin arrays
(line 5). This allows determining the primary and secondary items of 8 (line 6
and 7). Then, the Search procedure is recursively called with 8 to continue the
depth-first search by extending 8 (line 8). Based on properties and theorems
presented in previous sections, it can be seen that when EFIM terminates, all
and only the high-utility itemsets have been output.

Algorithm 2: The Search procedure

input : «: an itemset, a-D: the a projected database, Primary(a): the
primary items of «, Secondary(a): the secondary items of «, the
manutil threshold

output: the set of high-utility itemsets that are extensions of «

1 foreach item i € Primary(a) do

2 B=aU{i};

3 Scan a-D to calculate u(f) and create [3-D; // uses transaction
merging

4 if u(B) > minutil then output j;

5 Calculate su(, z) and lu(S, z) for all item z € Secondary(a) by
scanning S-D once, using two utility-bin arrays;

6 Primary(B) = {z € Secondary(a)|su(B, z) > minutil};

7 Secondary(B) = {z € Secondary(a)|lu(B, z) > minutil};

8 Search (3, 5-D, Primary(3), Secondary(3), minutil);

9 end

4.7. A detailed example.

This subsection now provides a detailed example of how the EFIM algorithm is
applied for the running example. Consider the database of the running example
and minutil = 30. The main procedure (Algorithm 1) is applied as follows.
Initially, « is set to the) (line 1), and the database is scanned to calculate lu(a, %)
for all items using a utility-bin array (line 2). This is performed as previously
illustrated in Fig. 3. The result is that the [u values of items are lu(a, a) = 65,
lu(a,b) = 61, lu(a,¢) = 96, lu(a,d) = 58, lu(a,e) = 88, lu(e, f) = 30, and
lu(cr, g) = 38. These values are equal to the TWU since the {u upper-bound is
equal to the TWU when a = (). Based on these values, the set of secondary
items is Secondary(a) = {a,b,c,d, e, f}. Then, the order > is established at the
order of ascending TWU values (line 4), that is f < g <d <b<a <e < c
After that, the database is scanned to remove items not in Secondary(a) (line
5). Since all items are in this set, the database is unchanged. At the same time,
items in transactions are sorted according to . Then, transactions are sorted
according to the total order »r (line 6). The result is: T5 <7 To <7 Ty <7
Ts <7 Ty. The resulting database after these transformation is shown in Table
4. Then, the database is scanned again to calculate the sub-tree utility of all
items with respect to « (line 7). The result is: su(a,a) = 65, su(a,b) = 56,
su(a,) = 54, su(a,d) = 25, su(a,e) = 27, su(a, f) = 5, and su(a,g) = 7.

EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining 21

Table 4. The database D with items sorted by >

TID Transaction

Ty (g9,5)(a,2)(e,

Ty (b,4)(d,3)(e,1)(c, 3)
T5 (972)(b7 2)(67 1)(07 2)
Ti (d,1)(a,1)(c, 1)

Table 5. The projected database {a}-D (when transaction merging is applied)

TID Transaction

T3 (67 1)(67 1)
Ty (e,2)(c, 6)
T (e, 1)

Thus, the set Primary(a) = {b,a,c} (line 8), which means that only sub-trees
of b, a and ¢ will be explored by the depth-first search. But in each sub-tree, the
items f,g,d,b,a,e,c may be considered in descendant nodes (since they are in
Secondary(a)).

The procedure Search is then called to perform the depth-first search (Algo-
rithm 2). It receives the sets Primary(«) and Secondary(a) as parameters. This
procedure loops on the primary items b, a and ¢, in that order (line 1). Here,
we will assume that item a is first processed, as the process for item a is more
interesting than item b. Thus, consider that § = {a} is considered (line 2). Then,
the database is scanned to create the projected database {a}-D (line 3). If only
the database projection was performed, the resulting projected database would
be as shown in Fig. 5. However, as previously explained, transaction merging
is performed at the same time as database projection, thanks to the efficient
implementation of merging proposed in EFIM. Thus, transactions 7> and T3 are
merged into a new transaction T3 during the database projection operation,
and the resulting merged projected database is shown in Table. 6. Moreover,
during the database projection operation u({a}) is calculated, and it is found
that u({a}) = 20. Since {a} is not a HUI (u({a}) = 20 < minutil), the itemset
{a} is not output (line 4). Then, the projected database {a}-D is scanned to
calculate the upper-bounds (v and ru for items in E({a}) using two utility-bin
arrays. The result is lu(5,c) = 65, lu(B,e) = 57, su(B,c) = 55, su(f,e) = 34.
The primary and secondary items are calculated as: Primary(f8) = {e} and
Secondary(B) = {c,e} (line 6 and 7). This means that only the extensions of
B U {e} will be explored and that in these sub-trees only items {c,e} will be
considered for the depth-first search. The procedure is then recursively called to
explore these sub-trees (line 9). The procedure then continue in the same way
until all the high-utility itemsets have been found. The final set of high-utility
itemsets output by the algorithm is shown in Table 3.

4.8. Complexity.

The complexity of EFIM can be analyzed as follows. In terms of time, a O(nw log(nw))
sort is performed initially. This cost is however negligible since it is performed

22 Zida et al

Table 6. The projected database {a}-D (when transaction merging is not applied)

TID Transaction

Tos (e, 3)(c,7)
e (e, 1)

only once. Then, to process each primary itemset « encountered during the
depth-first search, EFIM performs database projection, transaction merging and
upper-bound calculation. These three operations are each carried out in linear
time (O(nw)), as discussed previously. Let [be the number of itemsets in the
search space. The global time complexity of EFIM is thus O(nw log(nw)+1(nw-+
nw + nw)). Since the sort is only performed once, the term nw log(nw) can be
ignored and the complexity is actually closer to O(lnw).

Thus, the performance of the algorithm is proportional to the number of item-
sets in the search space. The number of itemsets in the search space is determined
by the upper-bounds which are used to prune the search space. In EFIM, two
tight upper-bounds are proposed. It was shown in the previous section that the
proposed (revised) sub-tree utility upper-bound is tighter than the remaining
utility upper-bound used in state-of-the-art one phase HUI mining algorithms.
But the efficiency of the proposed upper-bounds will also be evaluated in the
experimental evaluation section of this paper. Another aspect that increase the
efficiency of EFIM is the use of a pattern-growth approach, that only consider
itemsets appearing in the database (unlike algorithms such as HUI-Miner, FHM
and HUP-Miner, which may consider patterns not appearing in the database).
Thus, this contributes to reduce the constant .

Based on the above time complexity analysis, it can also be observed that the
number of transactions n depends on how the actual size of projected databases,
and in particular how many transactions can be merged. Thus, the more trans-
actions are merged, the smaller n will be, and the faster the algorithm will be.
The influence of the effectiveness of transaction merging is also discussed in the
experimental evaluation of this paper.

In terms of space complexity, the main cost is the space used by utility-
bin arrays and the space for storing projected databases. Utility-bin arrays are
created once and require O(]I]) space. The database projection operation is
performed for each primary itemset « and requires at most O(nw) space for each
projected database. In practice, this is small considering that projected databases
become smaller as larger itemsets are explored, and that database projections
are implemented using offset pointers. Globally, the space complexity of EFIM
is O(]I] 4 Inw) because the number of projected databases is determined by the
number of itemsets in the search space [.

5. Experimental Results

We performed several experiments to evaluate the performance of the proposed
EFIM algorithm. Experiments were carried out on a computer with a fourth
generation 64 bit core i7 processor running Windows 8.1 and 16 GB of RAM.
We compared the performance of EFIM with five state-of-the-art algorithms,
namely UP-Growth+, HUP-Miner, d2HUP, HUI-Miner and FHM. Moreover, to
also evaluate the influence of the design decisions in EFIM, we also compared it

EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining 23

Table 7. Dataset characteristics

Dataset # Transactions # Distinct items Avg. trans. length
Accident 340,183 468 33.8

BMS 59,601 497 4.8

Chess 3,196 75 37.0

Connect 67,557 129 43.0

Foodmart 4,141 1,559 4.4

Mushroom 8,124 119 23.0

Chainstore 1,112,949 46,086 7.2

Pumsb 49,046 2,113 74

Kosarak 990,000 41,270 8.1

Table 8. Dataset types

Dataset Type

Accident moderately dense, moderately long transactions
BMS sparse, short transactions

Chess dense, long transactions

Connect dense, long transactions

Foodmart sparse, short transactions

Mushroom dense, moderately long transactions
Chainstore very sparse, short transactions

Pumsb dense, very long transactions

Kosarak very sparse, moderately short transactions

with two versions of EFIM named EFIM(nop) and EFIM(lu) where transaction
merging (HTM) and search space pruning using the sub-tree utility were respec-
tively deactivated. All the algorithms first read the database in main memory,
then search for high-utility itemsets, and write the result to disk. Since the in-
put and output is the same for all algorithms, the cost of disk accesses has no
influence on the results of the experiments.

Algorithms were implemented in Java and memory measurements were done
using the standard Java API. Experiments were performed using a set of stan-
dard datasets used in the HUIM literature for evaluating HUIM algorithms,
namely (Accident, BMS, Chess, Connect, Foodmart, Mushroom, and Chainstore).
These datasets are chosen because they have varied characteristics. Tables 7 and
8 summarize their characteristics. Accident is a large dataset with moderately
long transactions. BMS is a sparse dataset with short transactions. Chess and
Connect are dense datasets with long transactions and few items.Foodmart is a
sparse dataset with short transactions. Chainstore is a sparse dataset with short
transactions. Mushroom is a dense dataset with moderately long transactions.
Foodmart and Chainstore are customer transaction database containing real ex-
ternal/internal utility values. For other datasets, external/internal utility values
have been respectively generated in the [1,1,000] and [1, 5] intervals using a log-
normal distribution, as done in previous state-of-the-art HUIM studies (Ahmed
et al, 2009; Fournier-Viger et al, 2014; Liu et al, 2012; Tseng et al, 2013). The
datasets and the source code of the compared algorithms can be downloaded as
part of the SPMF open-source data mining library (Fournier-Viger et al, 2014)
at http://www.philippe-fournier-viger.com/spmf/.

24 Zida et al
5.1. Influence of the minutil threshold on execution time.

We first compare execution times of the various algorithms. We ran the algo-
rithms on each dataset while decreasing the minutil threshold until algorithms
were too slow, ran out of memory or a clear winner was observed. As it Execu-
tion times are shown in Fig. 4. Note that for UP-Growth+, no result is shown
for the Connect and Pumsb datasets, and that some results are missing for the
Chess dataset because UP-Growth+ exceeded the 16 GB memory limit. Results
are also not shown for the EFIM(lu) algorithm on Pumsb and Kosarak because
it took too long to terminate.

A first observation is that EFIM outperforms UP-Growth+, HUP-Miner,
d?HUP, HUI-Miner and FHM on seven out of the nine datasets (all datasets
except Chainstore, and Kosarak). EFIM performs especially well for dense or
moderately dense datasets. EFIM is in general about two to three orders of
magnitude faster than the other algorithms. For Accident, BMS, Chess, Connect,
Foodmart, Mushroom, and Pumsb, EFIM is respectively up to 15334, 2, 33028, —,
17, 3855 and — times faster than UP-Growth+, 154, 741, 323, 22636, 2, 85, and
136 times faster than HUP-Miner, 89, 1490, 109, 2587, 1, 15 times, and 65 faster
than d?HUP, 236, 2370, 482, 10586, 3, 110, 17 times faster than HUI-Miner and
145, 227, 321, 6606, 1, 90, and 197 times faster than FHM.

On the Chainstore dataset, EFIM(nop) is about 10 times slower than d?HUP,
but it is faster than UPGrowth+ and HUI-Miner, and has comparable speed to
FHM. On the Kosarak dataset, EFIM(nop) is faster than all algorithms except
HUP-Miner and d?HUP, and the difference with these two algorithms is small
(1 time or less).

The reasons why EFIM performs so well in terms of execution time are four-
fold, and will be analyzed in more detail in the following experiments.

— First, the proposed sub-tree utility and local-utility upper-bounds allow EFIM
to prune in general, a larger part of the search space compared to other algo-
rithms, mainly because the sub-tree utility is a tighter upper-bound than the
remaining utility upper-bound used by previous one-phase algorithms. Thus,
less itemsets need to be considered to find the high-utility itemsets.

— Second, contrarily to algorithms such as HUI-Miner, FHM and HUP-Miner,
EFIM only considers itemsets existing in the database (as it is a pattern-
growth algorithm), thus avoiding spending time to consider itemsets that do
not occur in the database.

— Third, the proposed HTM transaction merging technique allows replacing sev-
eral transactions by single transactions, which greatly reduces the cost of
database scans. Transaction merging works especially well for datasets where
many transactions are similar, such as dense datasets. For these datasets,
EFIM has the best performance in terms of execution time.

— Fourth, the efficient calculation of the proposed upper-bounds in linear time
using utility-bin arrays also contribute to the time efficiency of EFIM.

5.2. Influence of the minutil threshold on memory usage.

In the previous experiment, the memory usage of EFIM was also recorded and
compared with the same algorithms using the same parameters. Results are
shown in Tables 9 and 10.

EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining 25
i BMS Chess
1000000 Accident 10000 10000
100000
1000 1000
10000 =
= > 1 100
o 1000 £ 100 -
€ g
£ 100 5 g 10
< |
I S——— 10 2 1]
1 1
27500K 25000K 22500K 20000K 17500K 2280K 2270K 2260K 2250K 2240K 600K 550K 500K 400K 350K
Minimum Utility Threshold Minimum Utility Threshold Minimum Utility Threshold
Foodmart
100000 Connect 100 100000 Mushroom
10000) 100005 o o ——9
—— g e "]
= 1000 } P = 1000
T £ o It 7 —
£ 100 € E 100§t —x— 7
2 S 1 “’—n——sﬂ?‘l =
5 & - 5 A ————Ah——A 4
s o € wr L
I s —— o
1 A A A 1
16000K 15000k 14000K 13000K 3000 2500 2000 1000 1 100K 95K 90K 85K 80K
Minimum Utility Threshold Minimum Utility Threshold Minimum Utility Threshold
1000 Chainstore . 10000 Pumsb 1000 Kosarak
/& y h
1 Y
1000 4 i
100 | K 100 b
= = = 3
£ é R £
2 10k ——a—4—*—=2 = * g ——5 10
& e 10 &
1 1 1
4000K 3500K 3000K 2500K 2000K 12500K 12400K 12300K 12200K 12100K 1500K 1400K 1300K 1200K 1100K
Minimum Utility Threshold Minimum Utility Threshold Minimum Utility Threshold
——EFIM__—+EFIM(lu)__—EFIM(nop) _ —&—FHM_—~— HUI-MINER HUP-MINER __—4D2HUP___—@— UP-Growth+ |

Fig. 4. Execution times on different datasets

In terms of memory usage, EFIM clearly outperforms the other algorithms on
all datasets. For Accident, BMS, Chess, Connect, Foodmart, Mushroom, Chain-
store, Pumsb and Kosarak, EFIM uses 1.8, 4.4 14.9, 4.5, 1.3, 6.5, 1.9, 2.1 and 2.2
times less memory than the second fastest algorithm (d?HUP). Moreover, EFIM
uses 1.6, 9.2, 4.6, 8.1, 3.2, 3.1, 2.8, 1.47 and 2.45 times less memory than the
third fastest algorithm (FHM). It is also interesting that EFIM utilizes less than
100 MB on four out of the nine datasets, and never more than 1 GB, while other
algorithms often exceed 1 GB. UP-Growth+ generally performs the worse, as it
even exceeded the 16 GB memory limit on the Chess dataset.

It is also interesting that EFIM is the most memory-efficient, even for the
Chainstore and Kosarak datasets, where EFIM is slower than d2HUP. For these
datasets, the trade-off that EFIM provides is useful for application where memory
is limited.

A reason why EFIM is so memory efficient is that it uses a simple database
representation, which does not requires to maintain much information in memory
(only pointers for pseudo-projections). Other algorithms rely on more complex
structures such as tree-structures (e.g. UP-Growth+) and list-structures (e.g.
HUP-Miner, HUI-Miner and FHM), hyper-link structures (e.g. d?HUP), which
requires additional memory for pointers between nodes and for maintaining ad-
ditional information. For example, it can be easily seen that for any itemset «
the size of the a projected database of EFIM is smaller than the size of the «
utility-list of HUP-Miner, HUI-Miner and FHM. Both structures contain entries
representing transactions where a occurs. However, EFIM stores two fields per

26 Zida et al

Table 9. Comparison of maximum memory usage (MB) of HUI-Miner, FHM, EFIM and
UP-Growth+

Dataset HUI-MINER FHM EFIM UP-Growth+
Accident 1,656 1,480 895 765

BMS 210 590 64 64

Chess 405 305 65 -

Connect 2,565 3,141 385 -

Foodmart 808 211 64 819
Mushroom 194 224 71 1,507
Chainstore 1,164 1,270 460 1,058

Pumsb 1,221 1,436 986 -

Kosarak 1,163 1,409 576 1,207

Table 10. Comparison of maximum memory usage (MB) of HUP-Miner and d>HUP

Dataset HUP-Miner d?HUP
Accident 1,787 1,691
BMS 758 282
Chess 406 970
Connect 1,204 1,734
Foodmart 68 84
Mushroom 196 468
Chainstore 1,034 878
Pumsb 1,021 2,046
Kosarak 712 1,260

entry (transaction id and pointer), while the utility list stores three (transac-
tion id, rutil and sutil values). Moreover, a projected database can contain much
less entries than the corresponding utility-list because of transaction merging.
Thus, by applying transaction merging, several entries are replaced by a single
one. For this reason, the gap in terms of memory between EFIM and the other
algorithms tends to increase for dense datasets or datasets where transaction
merging is more effective (the effect of transaction merging will be studied in the
next subsection). Another reason for the high memory efficiency of EFIM com-
pared to utility list based algorithms is that the number of projected databases
created by EFIM is less than the number of utility-lists, because EFIM visits less
nodes of the search-enumeration tree using the proposed sub-tree utility upper-
bound and by considering only itemsets appearing in the database (as it will
be shown later). EFIM is also more efficient than two-phase algorithms such as
UP-Growth+ since it is a one-phase algorithm (it does not need to maintain a
large number of candidates in memory).

Lastly, another important characteristic of EFIM in terms of memory effi-
ciency is that it reuses some of its data structures. As explained in section 4.5,
EFIM uses a very efficient mechanism called Fast Array Counting for calculat-
ing upper-bounds. FAC only requires to create three utility-bin arrays that are
then reused during the depth-first search to calculate the upper-bounds of each
itemset.

EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining 27

Table 11. Average projected database size (number of transactions)

Dataset EFIM EFIM(nop) Size reduction (%)
Accident 784 113,304 99.3%

BMS 112.6 204.1 44.8%

Chess 2.6 1363.9 99.8%

Connect 1.4 43687 99.9 %

Foodmart 1.12 1.21 71%

Mushroom 1.3 573 99.7%

Chainstore 1,085 1,326 18.1%

Pumsb 1075 22,326 95.2%

Kosarak 1,727 3,653 53%

5.3. Influence of transaction merging on execution time.

In terms of optimizations, the proposed transaction merging technique used in
EFIM sometimes greatly increases its performance in terms of execution time.
To assess how effective transaction merging is on the various datasets, Table 11
shows the average number of transactions in projected databases when EFIM is
run with transaction merging activated (EFIM) and when it is run with transac-
tion merging deactivated (EFIM(nop)). It can be observed that on the Accident,
Chess, Connect, Mushroom and Pumsb datasets, transaction merging allows to
reduce the size of projected database by more than 90 % in terms of number of
transactions.

This is one of the reason why EFIM perform very well on dense or moder-
ately dense datasets (Chess, Connect, Mushroom and Pumsb). For example, for
Connect and minutil = 13M, EFIM terminates in 3 seconds while HUP-Miner,
d?HUP, HUI-Miner and FHM respectively run for 22, 2, 10 and 6 hours. On dense
datasets, transaction merging is very effective as projected transactions are more
likely to be identical. This can be seen by comparing the runtime of EFIM and
EFIM(nop). On Chess, Connect and Mushroom, EFIM is up to 116, 3790 and 55
times faster than EFIM(nop). For the Accidents, BMS and Foodmart datasets,
transaction merging also reduces execution times but by a lesser amount (EFIM
is up to 90, 2 and 2 times than EFIM(nop) on Accident, BMS and Foodmart).
It is also interesting to note that the proposed transaction merging mechanism
cannot be implemented efficiently in utility-list based algorithms such as HUP-
Miner, HUI-Miner and FHM, due to their vertical database representation, and
also for hyperlink-based algorithms such as the d2HUP algorithm.

Lastly, another interesting observation related to transaction merging is that
on the Chainstore and Kosarak datasets, which are quite sparse datasets, trans-
action merging is not very effective. For these datasets, EFIM(nop) is faster than
EFIM. Thus, this shows that for some datasets the cost of transaction merging
exceeds its benefits, and it should be deactivated.

5.4. Comparison of the number of visited nodes.

We also performed an experiment to compare the ability at pruning the search
space of EFIM with other algorithms. Tables 12 and 13 show the number of nodes
of the search-enumeration tree (itemsets) visited by EFIM, UP-Growth+, HUP-
Miner, d2HUP, HUI-Miner and FHM for the lowest minutil values on the same

28

Zida et al

Table 12. Comparison of visited node count for HUI-Miner, FHM and EFIM

Dataset HUI-MINER FHM EFIM
Accident 131,300 128,135 51,883
BMS 2,205,782,168 212,800,883 323

Chess 6,311,753 6,271,900 2,875,166
Connect 3,444,785 3,420,253 1,366,893
Foodmart 55,172,950 1,880,740 233,231
Mushroom 3,329,191 3,089,819 2,453,683
Chainstore 4,422,322 8,285 3,005
Pumsb 74,050 68,050 56,267
Kosarak 4,794,819 135,874 2,073

Table 13. Comparison of visited node count for UP-Growth+, HUP-Miner and d2HUP

Dataset UP-Growth+ HUP-Miner d2HUP
Accident 3,234,611 113,608 119,427
BMS 91,195 205,556,936 220,323,377
Chess - 3,385,134 3,051,789
Connect

Foodmart 233,231 1,258,820 233,231
Mushroom 13,779,114 3,054,253 2,919,842
Chainstore 987 3,007

Pumsb - 1,029,702 62,361
Kosarak 2,292 57,706 9,257

datasets. It can be observed that EFIM is generally more effective at pruning the
search space than the other algorithms, thanks to its proposed sub-tree utility
and local utility upper-bounds. For example, it can be observed that EFIM visits
respectively up to 282, 636000, 682000, 6000800 and 658000 times less nodes than
UP-Growth+, HUP-Miner, d?HUP, HUI-Miner and FHM.

5.5. Influence of the number of transactions on execution time.

Lastly, we also compared the execution time of EFIM with UP-Growth+, HUP-
Miner, d?HUP, HUI-Miner and FHM while varying the number of transactions
in each dataset to assess the scalability of the algorithms. For this experiment,
algorithms were run on the same datasets using the lowest minutil values used
in previous experiments, while varying the number of transactions from 25%
to 100%. Results are shown in Fig. 5. It can be observed that EFIM’s runtime
linearly increases w.r.t to the number of transactions for the six first datasets,
while runtimes of UP-Growth+, HUP-Miner, d2HUP, HUI-Miner and FHM al-
most exponentially increase for some datasets such as Chess and BMS. Thus, it
can be concluded that EFIM hasthe overall best scalability on these datasets.
The reason for this excellent scalability is that most operations performed by
EFIM for an itemset « are performed in linear time. Thus, the complexity of
EFIM is mostly linear for each node visited in the search space. Moreover, thanks
to the proposed sub-tree utility and local-utility upper-bounds, EFIM can prune
a large part of the search space.

For the three last datasets (Chainstore, Pumsb and Kosarak, the scalability
of basically all algorithms exponentially increase, and EFIM has comparable

EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining 29

Chess

Accident 10000 BMS 10000

1000000
100000
10000
1000

1000 1000

=

Q

=)
=
o
S

=

o

S
=
o

-

Runtime (s)
i
o
Runtime (s)

-

Runtime (s)

25% 50% 75% 100% 25% 50% 100% 25% 50% 75% 100%

75%
Database Size Database Size Database Size
Connect Mushroom
100000 25 Foodmart 100000
10000 20 10000
AlDOO) ~ 15 AlOOO
£ 100 T < 100
g £ 10 £
£ 10] = 10
€ g s S
2 1 € 1
25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%
Database Size Database Size Database Size
1000 Chainstore . 10000 Pumsb ;1000 Kosarak
K
1000 ; !
100 100
_ g _.100 = {
O 0 O
k3 M T a3
£ E 10 £
£ 10 rE £ 107
S 5 S
& & 1 &
1 1
25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100%
Minimum Utility Threshold Minimum Utility Threshold Minimum Utility Threshold
I ——EFIM__ —+—EFIM(lu) —<—EFIM(nop) —H5—FHM _ —A— HUI-MINER HUP-MINER —4A— D2HUP —@— UP-Growth+ |

Fig. 5. Scalability on different datasets

scalability to other algorithms on those datasets. The reason why the execution
times of algorithms increase exponentially on these three datasets is that the
manutil threshold is fixed, and thus for a larger amount of transactions, more
itemsets cannot be pruned by the minutil threshold. Because the search space
becomes exponentially larger, even if EFIM perform linear time operations for
each itemset in its search space, its execution time exponentially increases (as
other algorithms for this dataset).

6. Conclusion

High-utility itemset mining is an important data mining task with numerous
applications. However, it remains very time consuming (Fournier-Viger et al,
2014; Liu et al, 2012; Tseng et al, 2013). To improve the efficiency of HUIM
in terms of memory and execution time, we have presented a novel algorithm
for high-utility itemset mining named EFIM. It relies on two new upper-bounds
named sub-tree utility and local utility to prune the search space. It also intro-
duces a novel array-based utility counting approach named Fast Utility Counting
to calculate these upper-bounds in linear time and space. Moreover, to reduce
the cost of database scans, EFIM introduces two techniques for database pro-
jection and transaction merging named High-utility Database Projection (HDP)
and High-utility Transaction Mergin (HTM), also performed in linear time and
space. An extensive experimental study on various datasets shows that EFIM
is in general two to three orders of magnitude faster and consumes up to eight

30 Zida et al

times less memory than the state-of-art algorithms UP-Growth+, HUP-Miner,
d?HUP, HUI-Miner and FHM. For very sparse datasets, EFIM is sometimes
slower than some other algorithms. However, in terms of memory usage, it al-
ways outperform the other algorithms. Moreover, results show that EFIM has
excellent scalability on both sparse and dense datasets. The source code of all
algorithms and datasets used in the experiments can be downloaded as part
of the SPMF open-source data mining library (Fournier-Viger et al, 2014) at
http://www.philippe-fournier-viger.com/spmf/.

The work presented in this paper introduces several novel ideas that can be
reused in the field of high-utility pattern mining to develop extensions of the
problem of high-utility itemset mining. In particular, some research possibilities
are to extend EFIM for popular variations of the HUIM problem such as mining
concise representations of high-utility itemsets (Fournier-Viger et al, 2014), high-
utility association rules (Sahoo et al, 2015), top-k high-utility itemsets (Lu et
al, 2014; Ryang et al, 2015; Tseng et al, 2016), incremental high-utility itemsets
(Ahmed et al, 2009; Lin et al, 2015), periodic high-utility itemsets (Fournier-
Viger et al, 2016) and on-shelf high-utility itemsets (Fournier-Viger et al, 2015).
Moreover, additional optimizations may also be developed to further improve
the performance of EFIM. For example, in this paper, the EFIM algorithm was
applied to database that fit in main memory. An interesting possibility is to
redesign EFIM as a distributed algorithm to be able to mine very large databases,
similarly to the algorithm proposed in (Lin et al, 2015).

Acknowledgements. This project was supported by a NSERC Discovery grant from
the Government of Canada and an initiating fund provided to the second author by
Harbin Institute of Technology (Shenzhen).

References

Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases.
Proceedings of the 20th international conference on very large databases, Morgan Kauf-
mann, Santiago de Chile, Chile, September 1994, pp. 487-499

Ahmed CF, Tanbeer SK, Jeong BS, Lee, YK (2009) Efficient tree structures for high-utility
pattern mining in incremental databases. IEEE Transactions on Knowledge and Data En-
gineering 21(12):1708-1721

Ahmed CF, Tanbeer SK, Jeong B (2010) Mining High Utility Web Access Sequences in Dy-
namic Web Log Data. Proceedings of the international conference on software engineering
artificial intelligence networking and parallel/distributed computing, IEEE, London, UK,
June 2010, pp. 76-81

Fournier-Viger P, Gomariz A, Gueniche T, Soltani A, Wu CW, Tseng VS (2014) SPMF: a Java
Open-Source Pattern Mining Library. Journal of Machine Learning Research, 15:3389-3393

Fournier-Viger P, Wu CW, Tseng VS (2014) Novel Concise Representations of High Utility
Itemsets using Generator Patterns. Proceedings of the 10th international conference on
advanced data mining and applications, Guilin, China, December 2014. Lecture Notes in
Artificial Intelligence 8933, Springer, Berlin, pp. 30-43

Fournier-Viger P, Wu CW, Zida S, Tseng VS (2014) FHM: Faster high-utility itemset mining
using estimated utility co-occurrence pruning. Proceedings of the 21st International Sym-
posium on Methodologies for intelligent systems, Roskilde, Denmark, June 2014. Lecture
Notes in Artificial Intelligence 9384, Springer, Berlin, pp. 83-92

Fournier-Viger P, Lin JCW, Duong QH, Dam TL (2016) PHM: Mining Periodic High-Utility
Ttemsets. Proceedings of the 16th industrial conference on data mining, New York, USA,
July 2016. Lecture Notes in Artificial Intelligence 9728, Springer, Berlin, pp. 64-79

Fournier-Viger P, Zida S (2015) FOSHU: Faster On-Shelf High Utility Itemset Mining with or
without negative unit profit. Proceedings of the 30th symposium on applied computing,
ACM, Salamanca, Spain, April 2015, pp. 857-864

EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining 31

Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without candidate generation: a
frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8(1):53-87

Pei J, Han J, Lu H, Nishio S, Tang S, Yang D (2001) H-Mine: Hyper-Structure Mining of Fre-
quent Patterns in Large Databases. Proceedings of the 2001 IEEE international conference
on data mining, IEEE, San Jose, CA, November 2001, pp. 441-448

Krishnamoorthy S (2015) Pruning strategies for mining high utility itemsets. Expert Systems
with Applications, 42(5):2371-2381

Lan GC, Hong TP, Tseng VS (2014) An efficient projection-based indexing approach for mining
high utility itemsets. Knowledge and Information Systems, 38(1):85-107

Lin JCW, Hong TP, Lan GC, Wong JW, Lin WY (2015) Efficient updating of discovered
high-utility itemsets for transaction deletion in dynamic databases. Advanced Engineering
Informatics, 29(1):16—27

Lin YC, Wu CW, Tseng VS (2015) Mining High Utility Itemsets in Big Data. Proceedings
of the 9th pacific-asia conference on knowledge discovery and data mining, Ho Chi Minh
City, Vietnam, May 2015, Lecture Notes in Artificial Intelligence 9077, Springer, Berlin,
pp- 649-661, 2015.

Liu J, Wang K, Fung B (2012) Direct discovery of high utility itemsets without candidate
generation. Proceedings of the 12th IEEE international conference on data mining, IEEE,
Brussels, Belgium, December 2012, pp. 984-989, 2012.

Liu M, Qu J (2012) Mining high utility itemsets without candidate generation. Proceedings of
the 22nd ACM international conference on information and knowledge management, ACM,
Maui, HI, October 2012, pp. 5564

Liu Y, Cheng C, Tseng VS (2013) Mining Differential Top-k Co-expression Patterns from Time
Course Comparative Gene Expression Datasets. BMC Bioinformatics, 14(230)

Liu Y, Liao W, Choudhary A (2005) A two-phase algorithm for fast discovery of high utility
itemsets. Proceedings of the 9th Pacific-Asia Conference on Knowledge Discovery and Data
Mining, Hanoi, Vietnam, May 2005, Lecture Notes in Artificial Intelligence 3518, Springer,
Berlin, pp. 689-695

Lu T, Liu Y, Wang L (2014) An Algorithm of Top-k High Utility Itemsets Mining over Data
Stream. Journal of Software, 9(9):2342-2347

Pei J, Han, J, Mortazavi-Asl B, Wang J, Pinto H, Chen Q, Dayal U, Hsu M (2004) Mining
sequential patterns by pattern-growth: the PrefixSpan approach. IEEE Transaction on
Knowledge and Data Engineering, 16(11):1424-1440

Ryang H, Yun U (2015) Top-k high utility pattern mining with effective threshold raising
strategies. Knowledge-Based Systems, 76:109-126

Rymon R (1992) Search through systematic set enumeration. Proceedings of the third in-
ternational conference on principles of knowledge representation and reasoning, Morgan
Kaufmann, Cambridge, MA, October 1992, pp. 539-50

Sahoo J, Das AK, Goswami A (2015) An efficient approach for mining association rules from
high utility itemsets. Expert Systems with Applications, 42(13):5754-5778

Song W, Liu Y, Li J (2014) BAHUI: Fast and memory efficient mining of high utility itemsets
based on bitmap. Proceedings of the international journal of data warehousing and mining,
10(1):1-15

Thilagu M, Nadarajan R (2012) Efficiently Mining of Effective Web Traversal Patterns With
Average Utility. Proceedings of the international conference on communication, computing,
and security, CRC Press, Gurgaon, India, September 2016, pp. 444-451

Tseng VS, Shie BE, Wu CW, Yu PS (2013) Efficient algorithms for mining high utility item-
sets from transactional databases. IEEE Transactions on knowledge and data engineering,
25(8):1772-1786

Tseng VS, Wu CW, Fournier-Viger P, Yu P (2016) Efficient Algorithms for Mining Top-K
High Utility Itemsets. IEEE Transactions on Knowledge and Data Engineering, 28(1):54—
67, 2016.

Uno T, Kiyomi M, Arimura H (2004) LCM ver. 2: efficient mining algorithms for fre-
quent/closed /maximal itemsets. Brighton, UK, November 2014, Proc. ICDM’04 Workshop
on Frequent Itemset Mining Implementations, CEUR.

Yao H, Hamilton HJ, Butz CJ (2004) A foundational approach to mining itemset utilities from
databases. Proceedings of the 3rd SIAM international conference on data mining, STAM,
Lake Buena Vista, FL, USA, April 2004. pp. 482-486

Yin J, Zheng Z, Cao L, Song Y, Wei, W (2012) An Efficient Algorithm for Mining High Utility
Sequential Patterns, Proceedings of the 18th ACM SIGKDD international conference on
knowledge discovery and data mining, ACM, Beijing, China, August 2012, pp. 660-668

32 Zida et al

Yin J, Zheng Z, Cao L, Song Y, Wei W (2013) Efficiently Mining Top-K High Utility Sequential
Patterns Proceedings of the 13th international conference on data mining, IEEE, Dallas,
TX, USA, December 2013. pp. 1259-1264

Yun U, Ryang H, Ryu KH (2014) High utility itemset mining with techniques for reducing over-
estimated utilities and pruning candidates. Expert Systems with Applications, 41(8):3861—
3878

Zaki MJ (2000) Scalable Algorithms for Association Mining. IEEE Transactions on Knowledge
and Data Engineering, 12(3):372-390

Zida S, Fournier-Viger P, Wu CW, Lin JCW, Tseng VS (2015) Efficient mining of high utility
sequential rules. Proceedings of the 11th international conference on machine learning and
data mining, Hamburg, Germany, July 2015, Lecture Notes in Artificial Intelligence 9166,
Springer, Berlin, pp. 1-15

Zida S, Fournier-Viger P, Lin JCW, Wu CW, Tseng VS (2015) EFIM: A Highly Efficient
Algorithm for High-Utility Itemset Mining. Proceedings of the 14th mexican international
conference on artificial intelligence, Cuernavaca, Mexico, October 2015. Lecture Notes in
Artificial Intelligence 9413, Springer, Berlin, pp. 530-546

Author Biographies

Souleymane Zida has obtained a M.Sc. student in Computer Science
at University of Moncton, Canada. His research interests are high-
utility mining, frequent pattern mining, sequential rule mining and
algorithmic.

Philippe Fournier-Viger received the Ph.D. degree in Computer
Science from the University of Quebec in Montreal (2010). He is cur-
rently a full professor and Youth 1000 scholar at the Harbin Institute
of Technology Shenzhen Grad. School, China. He has published more
than 130 research papers in refereed international conferences and
journals. His research interests include data mining, pattern mining,
sequence analysis and prediction, text mining, e-learning, and social
network mining. He is the founder of the popular SPMF open-source
data mining library, which has been cited in more than 330 research
papers since 2010.

Jerry Chun-Wei Lin received the Ph.D. degree in 2010 from the Na-
tional Cheng Kung University, Tainan, Taiwan. He is currently working
as an assistant professor at School of Computer Science and Technol-
ogy, Harbin Institute of Technology Shenzhen Graduate School, China.
He has published around 180 research papers in referred journals and
international conferences. His interests include data mining, soft com-
puting, privacy preserving data mining and security, social network
and cloud computing.

Cheng-Wei Wu received the Ph.D. degree from the Department of
Computer Science and Information Engineering at National Cheng
Kung University, Taiwan, in 2015. Currently, he is hired as a post-
doctoral researcher in College of Computer Science, National Chiao
Tung University, Taiwan. His research interests include big data min-
ing, machine learning, Internet of Things, and sensor data analysis.

EFIM: A Fast and Memory Efficient Algorithm for High-Utility Itemset Mining 33

Vincent S. Tseng is a Professor at Department of Computer Sci-
ence in National Chiao Tung University. Currently he also serves as
the chair for IEEE Computational Intelligence Society Tainan Chap-
ter. Dr. Tseng has a wide variety of research interests covering data
mining, big data, biomedical informatics, multimedia databases, mo-
bile and Web technologies. He has published more than 300 research
papers in referred journals and international conferences as well as 15
patents held. He has been on the editorial board of a number of jour-
nals including IEEE Transactions on Knowledge and Data Engineer-
ing, IEEE Journal on Biomedical and Health Informatics, ACM Trans-
actions on Knowledge Discovery from Data, etc. He has also served as
chairs/program committee members for premier international confer-
ences related including KDD, ICDM, SDM, PAKDD, ICDE, CIKM,
IJCAI, etc. He is also the recipient of 2014 K. T. Li Breakthrough
Award.

Correspondence and offprint requests to: Philippe Fournier-Viger, School of Natural Sciences
and Humanities, Harbin Institute of Technology (Shenzhen), Shenzhen, GD 518055, China.
Email: philfv8@Qyahoo.com

