Lecture #5

云计算入门 Introduction to Cloud Computing GESC1001

Philippe Fournier-Viger

Professor School of Humanities and Social Sciences philfv8@yahoo.com

Fall 2020

CLOUD RESOURCE

(资源虚拟化)

Based on Chapter 5

Course schedule

Part I	Introduction and overview	
Part 2	Distributed and parallel systems	
Part 3	Cloud infrastructure	
Part 4	Cloud application paradigm (I)	
Part 5	Cloud application paradigm (2)	
Part 5 Part 6	Cloud application paradigm (2) Cloud virtualization and resource management	
Part 5 Part 6 Part 7	Cloud application paradigm (2) Cloud virtualization and resource management Cloud computing storage systems	
Part 5 Part 6 Part 7 Part 8	Cloud application paradigm (2) Cloud virtualization and resource management Cloud computing storage systems Cloud computing security	

A <u>computer</u> has three important resources:

I) A processor (处理器), to perform calculations,

2) Memory (计算机存储器)

Memory, to store data

Hard drive (硬盘驱动器)

For long-term storage, but accessing data is slow

RAM (内存)

For shortterm storage, but accessing data is fast

3) Communication channels (通信通道)

To communicate with other computers local network Internet

3) Communication channels (通信通道)

Different types:

«Telephone » cable (RJII) RJ45 Ethernet cable TV (电视) cable

Optical fiber (光学纤维)

WIFI (无线网络)

3) Communication channels (通信通道)

They have different characteristics: bandwith (带宽), latency (延迟), cost (元)

«Telephone » cable (RJII)

TV (电视) cable

Optical fiber (光学纤维)

WIFI (无线网络)

Operating system (操作系统)

- Each computer runs an operating system (操作系统) (e.g. Windows, Android, Linux, MacOS).
- Why do we need an operating system?
 →

Why do we need an operating system? I)to provide a user interface (用户界面) to the user,

This is a graphical user interface

Why do we need an operating system? I)to provide a user interface (用户界面) to the user,

Enter today's date (n-d-y): 08-04-81 The IBM Personal Computer DOS					
A>dir *.c	:011				
IBMBIO	COM	1920	07-23-81		
IBMDOS	COM	6400	08-13-81		
COMMAND	COM	3231	08-04-81		
FORMAT	COM	2560	08-04-81		
CHKDSK	COM	1395	08-04-81		
SYS	COM	896	08-04-81		
DISKCOPY	COM	1216	08-04-81		
DISKCOMP	COM	1124	08-04-81		
COMP	COM	1620	08-04-81		
DATE	COM	252	08-04-81		
TIME	COM	250	08-04-81		
MODE	COM	860	08-04-81		
EDL IN	COM	2392	08-04-81		
DEBUG	COM	6049	08-04-81		
BASIC	COM	10880	08-04-81		
BASICA	COM	16256	08-04-81		
A>_					

This is a text-based user interface

Why do we need an operating system? 2)to manage the applications that are running on the computer.

Why do we need an operating system? 3)to manage the resources of the computer

Memory

Processing resource

Communication channels

And also the devices such as Keyboard, mouse, screen...

Resource management (资源管理)

Resource management is complex for the cloud (云)。 Why?

- many computers,
- many users,
- many applications,
- many operating systems may be used...
- different kind of computers may be used...
- some computers can fail (电脑故障)

Resource management is discussed in detail in **Chapter 6**.

Traditional solution for a data center (数据中心)

- In a traditional **data center** (数据中心), a computer may be accessed by **many users** at the same time.
- An operating system (操作系统) is used for each computer in the data center.
 - to manage and share resources with other computers,
 - to protect applications and data from other applications,
 - to make sure that **performance** is good **for all users**.

Could we use an operating system like Windows 10 for the cloud?

It would not be a good idea!

Because, it would be difficult to do

- system administration (系统管理),
- security (系统安全) how to protect data?,
- resource management (资源管理),
- accounting (who should pay? and how much (元) for using the cloud?)

A better solution is **resource virtualization** (资源虚拟化)

- Resource virtualization (资源虚拟化) is the topic of this chapter.
- It is an approach to make it easy to manage the resources of **many** computers in the cloud.
- Main idea: each computer runs many virtual machines (VM 虚拟机).

What is a virtual machine (虚拟机)?

• A virtual machine (虚拟机):

an <u>application</u> that simulates a real computer, including its processor, memory, and communication channels.

- A **computer** can run many virtual machines at the same time.
- Each virtual machine works like a real computer.
- A virtual machine has:
 - its own operating system (操作系统)(e.g. Windows),
 - its own **applications**.

Note: A more general definition of what is a virtual machine will be presented later.

Example

Two

At home, on a Windows computer, it is possible to use VirtualBox or similar applications to create and run virtual machines (虚拟机).

- A virtual machine is also called an instance (实例) when we talk about cloud computing.
- The process of running virtual machines on a computer is called **virtualization**.

Virtualization in the cloud ightarrow

An **image (**虚拟机镜像) is the state of a computer that has been saved into a file

An image (虚拟机镜像) can be used to start an instance in the cloud (a virtual machine虚拟机)

The same image can be used to start many instances

Multiple instances can be run on the same computer

The user can stop an instance. The user can restart an instance.

Illustration

- I) Virtualization makes it easy to do load balancing (负载平衡):
- Each computer in the cloud can run several virtual machines.
- If a computer is too busy, the state of some of its virtual machines can be saved.
- Then, these virtual machines can be **sent to other computers** that are less busy.
- The other computers can continue running these virtual machines.

I) makes it easy to do load balancing (负载平衡):

I) makes it easy to do load balancing (负载平衡):

I) makes it easy to do load balancing (负载平衡):

2) It allows users to use an operating system that they like or need:

- e.g. some people prefer using Linux instead of Windows
- e.g. some people want to use some applications that run only on Windows or on Linux

- 3) Using virtual machines increases security:
- All virtual machines running on a same computer are isolated from each other (彼此隔离).
- A user running applications in a virtual machine will **not** be able to **steal data** (窃取数据) in another virtual machine or cause other security problems (viruses, etc.).

• If a hacker takes control of a virtual machine on a computer, he will not have access to the other virtual machines.

4) It is easy to manage computer resources:

- Modern virtualization software (applications 应用) allows to define <u>how much</u> resources can be used by each virtual machine.
 - processor time,
 - memory,
 - storage space.
- Thus, **resources can be reserved** and **guaranteed**

for each user.

5) It allows elasticity (弹性计算)

- If virtual machines are too busy or do not have enough resources, the state of a virtual machine can be saved and copied to other computers.
- These computers can run copies of the virtual machine.

5) It allows elasticity (弹性计算)

- If virtual machines are too busy or do not have enough resources, the state of a virtual machine can be saved and copied to other computers.
- These computers can run copies of the virtual machine.

5) It allows elasticity (弹性计算)

- If virtual machines are too busy or do not have enough resources, the state of a virtual machine can be saved and copied to other computers.
- These computers can run copies of the virtual machine.

5) It is easy to monitor performance (监视性能)

- The performance of each virtual machine can be monitored easily in term of:
 - processor time,
 - network usage,
 - storage space, etc.
- This is important for the "pay for what you use" model of cloud computing.

What is needed to do resource virtualization?

It is useful to have:

- powerful processors (强大的处理器),
- enough memory and storage space,
- hardware support (硬件支持)

(new computers often have specific hardware features to support virtualization),

••••

Virtualization is convenient for the user

For example, consider the Amazon EC2 Cloud.

- A user can create an Amazon Machine Image (AMI) containing an operating system.
- He can then use the image to create as many virtual machines as he wants in the cloud.
- He use **monitoring** and **management tools** provided by Amazon.

Two approaches for virtualization

I) Full virtualization (全虚拟化):

- the virtual machine is an exact copy of the physical hardware (物理硬件) of a computer.
 a typical desktop computer
- any operating system that can run on the real hardware can also run in the virtual machine. Windows, Linux...
- any applications for the operating system can be used.

Wechat, QQ,...

Another example

Some video games were once only played on a video game console and a TV Nowadays, using a virtual machine, we can play these games on a desktop computer or smartphone

Two approaches for virtualization

2) Paravirtualization (半虚拟化):

- the virtual machine does **not** support all functions of the physical hardware.
- thus, the operating system and applications must be modified to run on the virtual machine.

Virtual Machine Manager (hypervisor - 虚拟机管理程序)

- To run multiple machines at the same time on a computer, a software called a virtual machine manager (VMM) is often used.
- Some are run from an operating system such as Windows or Linux
 - e.g. Red Hat Virtual Machine Manager
- Others are run directly on the hardware (硬件)
 - e.g. Oracle VM server

Virtual Machine Manager (hypervisor - 虚拟机管理程序)

What can it do?

- create, start and stop virtual machines,
- save or load a virtual machine,
- monitor the performance of virtual machines (in real-time, or over a period of time),

Virtualization, an old concept...

- It has been first used in the 1950s.
- 1959: a computer named Atlas was using a virtual memory (United Kingdom 英国)
- Virtualization is a general concept that is not only applied to virtual machines.

Virtualization simulates access to a physical object by four ways:

 Multiplexing (多路复用): Create multiple virtual objects using one physical object.
 (e.g. a processor is shared by multiple applications)

Virtualization

- Aggregation (聚集): Create a virtual object from multiple physical objects.
 (e.g. several hard drives are viewed as a single hard drive by a computer)
- 3. Emulation (仿真): Construct a virtual object from a different type of physical object.

(e.g. the hard drive of a computer is used to simulate the RAM memory of a computer)

4. A combination of I and 3.

Guest operating system (客户操作系统)

- An operating system running in a virtual machine is called a "guest operating system" (客户操作系统).
- A guest operating system interacts with virtual hardware in the same way that it would interact with real hardware.
- The virtual machine manager (VMM) traps all interactions between the guest operating system and the real hardware.

Disadvantages of virtualization

Virtualization has side effects (副作用).

Performance may not be so good:

- All operations performed in a virtual machine are intercepted by the VMM before being executed.
- Because of this, a virtual machine may be slow.
- In general, running an application in a virtual machine is always slower.

Disadvantages of virtualization

Higher hardware costs:

 More expensive computers may be bought for running virtual machines (VMs) compared to computers running a traditional operating system

• Why?

Virtualization needs faster and/or multicore processors, more memory, larger disks, and a faster network access.

2 Viewing computer systems as layers

A computer system can be viewed as a set of layers:

An **application** typically interacts with the hardware (the processor, memory and storage) by first communicating with the operating system. Then the operating system tells the hardware what to do.

2 Viewing computer systems as layers

A computer system can be viewed as a set of layers:

Or an application can run directly on the hardware. This is the case of the **operating system**.

Virtual machine (虚拟机) Computer (电脑)

Operating System (操作系统) e.g. Windows

An alternative Computer (电脑)

Virtual Machine Manager (虚拟机管理器)

An alternative Computer (电脑)

Virtual Machine Manager (虚拟机管理器)

Virtual Machines (虚拟机) Ven Computer Mone Taxottes Applicate WINDOWS 10 6 3 🕭 💰 💻 🙆 🕅

Virtual machine manager (VMM) (虚拟机管理程序)

- It manages how resources of a computer are shared between one or more virtual machines.
- It monitors performance and takes actions when performance is not good.
 - e.g. If not enough RAM memory is available, the content of a virtual machine may be saved to disk to free some memory.

Virtual machine manager (VMM) (虚拟机管理程序)

 It checks what the virtual machines or applications are doing to ensure safety.

From the hardware point of view

- The processor of a computer (CPU) can perform a set of operations.
- A modern processor often offer three modes:
 - I. Kernel mode (内核模式): any operations can be performed on the processor. (e.g. this mode is used by the operating system such as Windows and the VMM)

From the hardware point of view

- 2. User mode: some operations considered dangerous (for security) are not allowed to be performed on the processor (e.g. this mode is used by applications to protect the operating system)
- 3. Virtual machine mode: this mode restricts what a virtual machine can do on the processor (e.g. this mode is often used for virtual machines to protect other virtual machines and the operating system)

- System virtual machine:
 - This type of virtual machine can run an operating system such as windows and several applications.
 - This is what we discussed mainly until now.
- Application virtual machine:
 - This type of virtual machine is designed to run a single application.
 - e.g. Java programs that are run directly in a virtual machine without using an operating system.

Traditional virtual machines

The VMM supports multiple virtual machines and runs directly on the hardware

Hosted virtual machines

The VMM runs under an operating system

Advantages:

The VM is easier to install The VM can use some components of the operating system

Disadvantage: Slower!

Example: VirtualPC, VirtualBox...

Performance penalty (性能代价)

- Using a virtual machine is slower than not using a virtual machine.
- <u>How much slower</u> depends on the type of virtual machines.
- If a virtual machine is running directly on the hardware the difference is small.
- If a virtual machine is running inside another operating system such as Windows the difference will be greater.

Performance penalty

- Some virtual machines will communicate directly with the processor to do calculations.
- This **can be done** when a virtual machine **is executed on the same** physical hardware that it simulates.
- This is fast.
- But they will still communicate with the VMM to use the network or read/write data (for security).

Performance penalty

 If a virtual machine simulates a kind of computer that is different from the hardware, then all operations performed by the VM must be translated by the VMM to be executed on the hardware.

This is **slower.**
Performance security isolation

- In theory, using virtual machines is very **safe**.
- Even if an attacker gain access to a virtual machine, he cannot access other virtual machines running on the same computer.
- This is true, except if the VMM has some security problems.

Performance security isolation

- Another reason why virtual machines are secure is that they are often restricted to only perform some operations.
- e.g. the XenVMM has only 28 special operating system operations, while a standard Linux operating system may have more than 280.

Conclusion

 In this part, we have discussed resource virtualization for the cloud.

Chapter 5. D. C. Marinescu. Cloud Computing Theory and Practice, Morgan Kaufmann, 2013.