
云计算入门
Introduction to Cloud Computing

GESC1001

Philippe Fournier-Viger

Professor

School of Humanities and Social Sciences

philfv8@yahoo.com

Fall 2020
1

Lecture #5

mailto:philfv8@yahoo.com

Course schedule

2

Part 1 Introduction and overview

Part 2 Distributed and parallel systems

Part 3 Cloud infrastructure

Part 4 Cloud application paradigm (1)

Part 5 Cloud application paradigm (2)

Part 6 Cloud virtualization and resource management

Part 7 & 8
Cloud computing storage systems

Cloud computing security

Final exam

Introduction

Last week:

◦ Review

◦ Chapter 4: Cloud application paradigm (part 1)

Today:

 Chapter 4: Cloud applications

(part 2) – the Map Reduce model

 Assignment 1

3

How to ask questions

We can discuss immediately after lectures

You may use the QQ group to contact

teaching assistants

My e-mail: philfv8@yahoo.com

4

4-CLOUD APPLICATIONS

(云应用)

PART 2

5

Introduction

 We discussed challenges for developing cloud
applications

 Today, we will talk about the details of how cloud
applications are created.

 To make cloud applications, the MapReduce
model is very popular.

 It is a “programming model” (编程模型 - a
way of developing applications for the cloud).

 It was proposed by Google in a research paper,
published in 2004.

MapReduce: Simplified Data Processing on Large Clusters,Jeffrey Dean and Sanjay
Ghemawat, OSDI'04: Sixth Symposium on Operating System Design and Implementation, San
Francisco, CA, December, 2004.

6

4.6

Introduction
Why MapReduce is popular?

 Because it is a simple programming model.

 A programmer (程序员) can easily write an

application that run on a distributed system (the

cloud), without much experience about how

distributed systems work.

7

Cloud

Application

(云应用)

Programmer (程序员)

Cloud (云）

Introduction

 One of the most popular version of

MapReduce is Hadoop.

 It is an open-source (开放源码)

implementation of MapReduce.

 I will explain the main idea.

 We will also discuss three examples.

8http://hadoop.apache.org/

mailto:http://hadoop.apache.org/

Introduction

 The main advantage of the cloud is
elasticity (云的弹性) .
◦ Using as many computers as needed to

address the cost (元) and timing constraints
of an application.

◦ Sharing the workload (工作负载) between
several computers.

◦ It must be divided into sub-tasks that can be
accomplished in parallel by several
computers.

 But how to do this?

9

Introduction

The workload should be divided

(分配) approximately equally between

computers.

10

Workload

Introduction

 Partitioning (分配) the workload is
not always easy.

 Three main types of workloads:

◦ modularly divisible (模块化分割)
workload: the workload is already divided
into sub-tasks.

◦ arbitrarily divisible (可任意划分)
workload: the workload can be partitioned
into an arbitrarily large number of sub-tasks
of equal or similar size.

◦ Others.

11

Map Reduce

 Designed for arbitrarily divisible
(可任意划分) workloads.

 It is used to perform parallel processing
(并行处理) for data-intensive (数据密集型)
applications.

 It has many applications: e.g. physics, biology,
etc.

 Once a cloud applications is created using
MapReduce, it can run in the cloud on as many
computers as needed.

12

Basic idea of MapReduce

Phase 1 (Map)

1. Split the data into blocks

2. Assign each block to an instance (实例)

(e.g. a computer or virtual machine)

3. Run these instances in parallel

1313

B

C

AData

Basic idea of MapReduce

Phase 1 (Map)

1. Split the data into blocks

2. Assign each block to an instance (实例)

(e.g. a computer or virtual machine)

3. Run these instances in parallel

1414

B

C

AData

Data

Part1

Data

Part2

Data

Part3

Basic idea of MapReduce

Phase 1 (Map)

1. Split the data into blocks

2. Assign each block to an instance (实例)

(e.g. a computer or virtual machine)

3. Run these instances in parallel

1515

B

C

A

Data

Part1

Data

Part2

Data

Part3

Data

Part1

Data

Part2

Data

Part3

Basic idea of MapReduce

Phase 1 (Map)

1. Split the data into blocks

2. Assign each block to an instance (实例)

(e.g. a computer or virtual machine)

3. Run these instances in parallel

1616

B

C

A

Data

Part1

Data

Part2

Data

Part3

Basic idea of MapReduce

Phase 2 (Reduce)

1. Once all the instances have finished their sub-

tasks, they send their results.

2. Results are merged to obtain the final result.

17

B

C

A

Data

Part1

Data

Part2

Data

Part3

Result

1

Result

2

Result

3

Basic idea of MapReduce

Phase 2 (Reduce)

1. Once all the instances have finished their sub-

tasks, they send their results.

2. Results are merged to obtain the final result.

18

B

C

A

Data

Part1

Data

Part2

Data

Part3

Result

1

Result

2

Result

3

Result

1

Result

2

Result

3

Basic idea of MapReduce

Phase 2 (Reduce)

1. Once all the instances have finished their sub-

tasks, they send their results.

2. Results are merged to obtain the final result.

19

B

C

A

Result

1

Result

2

Result

3

Result

Basic idea of MapReduce

Phase 2 (Reduce)

1. Once all the instances have finished their sub-

tasks, they send their results.

2. Results are merged to obtain the final result.

20

B

C

AResult

Who split the data and the gather

results?

 A “master instance” takes care of splitting the

data.

 Merging the results can be done by a set of

instances called the “reducing instances”

21

Master
Data

Data

Part1

Data

Part2

Data

Part3

RI_1
Result 1

Result2

Result3

Result
RI_2

How data is represented?

The input data (输入数据) can be any kind of
files.

But it is converted to a set of
<key, value> pairs (键值对).

e.g.: (key= CN, value = Shenzhen)

(key= CN, value = Beijing)

…..

22

A key (键) is some information that is used to group values

together.

How data is represented?

The output data (输出数据) is a also set of

<key, value> pairs.

e.g.: (key= CN, value = Shenzhen)

(key= CN, value = Beijing)

…..

23

A key (键) is some information that is used to group values

together.

MapReduce

 MapReduce is a programming model

(编程模型)

 It is inspired by the Map and the Reduce

operations of the LISP programming language.

 It is designed to process large datasets on

computing clusters (the cloud –云).

 It is often used with the Java language.

 A programmer has to define map() and

reduce() functions
24

A simple example

Consider that we want to count how many

times each word appear in a very large text

document.

25

Text

“Hello world, bye

world,

Hello cloud,

goodbye cloud”

A simple example

The master instance first splits the data into M data

blocks.

26

Text

“Hello world, bye

world,

Hello cloud,

goodbye cloud”

Part1

Part2

“Hello world, bye world”

“Hello cloud, goodbye cloud”

C

Master instance

A simple example

Then, it starts M mapping instances and gives a

data block to each instance.

27

Text

“Hello world, bye

world,

Hello cloud,

goodbye cloud”

Part1

Part2

“Hello world, bye world”

“Hello cloud, goodbye cloud”

A

B

C

Master instance

Mapping instances

A simple example - map

 All instances work in parallel.

 Consider the first instance. It reads its data.

 It creates a <key,value> pair (键值对) for each

word that it reads. A key (键) is a word and the

corresponding value (值) is the number 1.

Part1

“Hello world, bye world”A

<Hello, 1>

<World, 1>

<Bye, 1>

<World, 1>

A simple example - map

 Some words like “World” appear multiple times

in the result.

 All values that have the same key are grouped

together.

Part1

“Hello world, bye world”A

<Hello, 1>

<World, 1>

<Bye, 1>

<World, 1>

<Hello, 1>

<World, 2>

<Bye, 1>

A simple example - map

 Consider the second instance.

 The second instance reads its data.

 It creates a <key,value> pair for each word that it

reads. A key is a word and the corresponding value is

the number 1.

Part1
“Hello cloud, goodbye cloud”B

<Hello, 1>

<Cloud, 1>

<Goodbye, 1>

<Cloud, 1>

A simple example - map

Then, the second instance groups all values that

have the same key together.

Part1 “Hello cloud, goodbye cloud”
B

<Hello, 1>

<Cloud, 1>

<Goodbye, 1>

<Cloud, 1>

<Hello, 1>

<Cloud, 2>

< Goodbye, 1>

A simple example

So until now, we have:

32

BA

<Hello, 1>

<World, 2>

<Bye, 1>

<Hello, 1>

<Cloud, 2>

<Goodbye, 1>

Next, the reduce phase will combine

the local results found by all instances. →

A simple example - reduce
 The master instance will start R reducing instances for

combining results of mapping instances.

 In this example, only one reducing instance is used (instance

D)

33

BA

<Hello, 1>

<World, 2>

<Bye, 1>

<Hello, 1>

<Cloud, 2>

<Goodbye, 1>

D

Reducinginstance

34

BA

<Hello, 2>

<Cloud, 2>

<Bye, 1>
D

Reducinginstance

<World, 2>
This is the

final result!

A simple example - reduce

<Goodbye, 1>

A simple example

This is the code for this example:

35

Combine local results

MapReduce in more details

36

(1) An application starts a master instance and M worker instances for the Map

phase and, later, R worker instances for the Reduce phase.

The MapReduce

Process

MapReduce in more details

37

(2) The master split (分配) the input data in M segments (parts).

The MapReduce

Process

MapReduce in more details

38

(3) Each Map instance reads its input data segment and

processes the data

The MapReduce

Process

MapReduce in more details

39

(4) The local results are stored on the local disks of the computers

where the Map instances are executed.

The MapReduce

Process

MapReduce in more details

40

(5) The R reduce instances read the local results and merge the

results.

The MapReduce

Process

MapReduce in more details

41

(6) The final results are written by the Reduce instances to a

shared storage (共享存储)

The MapReduce

Process

MapReduce in more details

42

(7) The master instance monitors the Reduce instances and. When all of them

have finished, it is the END.

The MapReduce

Process

More details

 The data is usually split in blocks of

16 MB to 64 MB (megabytes -兆字节).

 The number of instances can be a few to

hundreds, or thousands of instances.

 What if some instances crashes? →

43

What happen if an instance fails?

 Fault-tolerance (容错): to ensure that a task is
accomplished properly even if some machines stop
working.

 The master instance asks each worker machine
about their state
(idle 空闲状态, in-progress 正在进行, or completed
完成任务) and identity.

 If the worker machine does not respond, the master
instance considers that this machine’s sub-task has
failed.

44

Master

What is your

state?
…

What happen if an instance fails?

 A task in progress (正在进行) on a failed

worker is set to idle (空闲状态).

 The task can then be given to another worker

(computer).

 The master writes takes of note of the tasks

that have been completed.

 The data is stored using the

GFS (Google File System).

45

What is a typical MapReduce machine in a

cluster?

According to the book, in 2012, a typical

computer for experimenting with MapReduce has

the following characteristics:

 dual-processor x86 running Linux,

 2–4 GB of memory,

 Network card: 100–1,000 Mbps.

 Data is stored on IDE 7 disks attached directly to

individual machines.

 The file system uses replication (复制)

46

What is a typical MapReduce machine in a

cluster?

 A cluster consists of hundreds or thousands

of machines.

 It provides availability (可利用性) and

reliability (可靠) using unreliable

hardware.

 The input data is stored on the local disk

of each instance to reduce communication

between computers.

47

A second example

Task: analyze a text to count how many

words with 1 letters, with 2 letters, with 3

letters, with 4 letters…

48

Text

“Hello world, bye

world,

Hello cloud,

goodbye cloud”

A second example

The master instance first splits the data into M

data blocks. Here M = 2.

49

Text

“Hello world, bye

world,

Hello cloud,

goodbye cloud”

Part1

Part2

“Hello world, bye world”

“Hello cloud, goodbye cloud”

C

Master instance

A second example

Then, it starts M instances and gives a data block

to each instance.

50

Text

“Hello world, bye

world,

Hello cloud,

goodbye cloud”

Part1

Part2

“Hello world, bye world”

“Hello cloud, goodbye cloud”

A

B

C

Master instance

Mapping instances

A second example - map

All instances work in parallel.

Consider the first instance. The first instance reads its

data. It creates a <key,value> pair for each word that it

reads. A key is the number of letters in the word and the

value is the word.

Part1 “Hello world, bye world”
A

<5, Hello>

<5, World>

<3, Bye>

<5, World>

A second example - map

Some words like “World” appear multiple times in the

result.

All values that have the same key are grouped together.

Part1 “Hello world, bye world”
A

<3, Bye>

<5, World, World,

Hello>

<5, Hello>

<5, World>

<3, Bye>

<5, World>
Note: value having the

same key are automatically

grouped

A second example - map

Consider the second instance.

The second instance reads its data. It creates a

<key,value> pair for each word that it reads, where a key

is a number of letters and the corresponding value is a

word.

Part1 “Hello cloud, goodbye cloud”
B

<5, Hello>

<5, Cloud>

<7,Goodbye>

<5, Cloud>

A second example - map

Then, all values that have the same key are

grouped together.

Part1 “Hello cloud, goodbye cloud”
B

<5, Hello, Cloud,

Cloud>

<7, Goodbye>

<5, Hello>

<5, Cloud>

<7,Goodbye>

<5, Cloud>
Note: value having the

same key are automatically

grouped

A second example

So until now, we have:

55

BA

Now, the reduce phase will take place to combine

the local results found by each instance

<5, Hello, Cloud, Cloud>

<7, Goodbye>

<3, Bye>

<5, World, World, Hello>

A second example - reduce
 The master instance starts R reducing instances for

combining results of mapping instances.

 In this example, only one reducing instance is used (instance

D)

56

BA

D

Reducinginstance

<5, Hello, Cloud, Cloud>

<7, Goodbye>

<3, Bye>

<5, World, World, Hello>

57

BA

<3, 1>

<5, 6>
D

Reducinginstance
<7, 1>

This is the

final result!

A second example - reduce

<5, Hello, Cloud, Cloud>

<7, Goodbye>

<3, Bye>

<5, World, World, Hello>

The result is shown below. It means that there is one word

containing three letters, six words containing five letters,

and one word containing seven letters.

A third example

 Consider a social network (社会网络)

like Wechat, QQ, LinkedIn where you

can be friend with other people.

 If you are a LinkedIn user and you view

the LinkedIn page of a friend, the page will

indicates how many friends you have

in common.

 Illustration →

58

59

This is the profile page of one of my former Master degree

students. When I click on his page, I see that we have 10

“friends” in common.

A third example

 Suppose that we have a social network with five
users: A,B, C, D, E

 We assume that friendship (友谊) is a
bidirectional relationship (双向关系).

 In other words, if you are a friend of someone,
s/he is also your friend.

 Assume that this is

the friendship graph:

60

A

B

C

E
D

A third example

Assume that data about friendship between

users is stored in a text file as follows:

 A -> B C D

 B -> A C D E

 C -> A B D E

 D -> A B C E

 E -> B C D

61

A

B

C

E
D

A third example

The data file will be split and sent to

various mapping instances.

Mapping instances will process each line

that they receive as follows: →

62

A third example - map

The first line A -> B C D is transformed

as:

by combining A with each of his friend.

63

(A B) -> B C D

(A C) -> B C D

(A D) -> B C D

Key Value

A third example - map

The second line B -> A C D E is transformed

as:

64

(A B) -> A C D E

(B C) -> A C D E

(B D) -> A C D E

(B E) -> A C D E

Key Value

A third example - map

The third line C -> A B D E is transformed

as:

65

(A C) -> A B D E

(B C) -> A B D E

(C D) -> A B D E

(C E) -> A B D E

Key Value

A third example - map

The fourth line D -> A B C E is transformed

as:

66

(A D) -> A B C E

(B D) -> A B C E

(C D) -> A B C E

(D E) -> A B C E

Key Value

A third example - map

The fifth line E -> B C D is transformed as:

67

(B E) -> B C D

(C E) -> B C D

(D E) -> B C D

Key Value

A third example – map (sort)

The values are then grouped by their key:

 (A B) -> (A C D E) (B C D)

 (A C) -> (A B D E) (B C D)

 (A D) -> (A B C E) (B C D)

 (B C) -> (A B D E) (A C D E)

 (B D) -> (A B C E) (A C D E)

 (B E) -> (A C D E) (B C D)

 (C D) -> (A B C E) (A B D E)

 (C E) -> (A B D E) (B C D)

 (D E) -> (A B C E) (B C D)

Furthermore, they are sorted (as above)

68

A third example - reduction

This data is then split and sent to reducers

 (A B) -> (A C D E) (B C D)

 (A C) -> (A B D E) (B C D)

 (A D) -> (A B C E) (B C D)

 (B C) -> (A B D E) (A C D E)

 (B D) -> (A B C E) (A C D E)

 (B E) -> (A C D E) (B C D)

 (C D) -> (A B C E) (A B D E)

 (C E) -> (A B D E) (B C D)

 (D E) -> (A B C E) (B C D)

69

A third example - reduction

Each reducer will intersect the list of

value on each line:

The first line:

(A B) -> (A C D E) (B C D)

will thus become:

(A B) -> (C D)

70

A third example - reduction

Each reducer will intersect the list of

value on each line:

The second line:

(A C) -> (A B D E) (B C D)

will thus become:

(A C) -> (B D)

and so on….

71

A third example – final result

The final result is:

(A B) -> (C D)

(A C) -> (B D)

(A D) -> (B C)

(B C) -> (A D E)

(B D) -> (A C E)

(B E) -> (C D)

(C D) -> (A B E)

(C E) -> (B D)

(D E) -> (B C)

72

Key Value

A third example – final result

The final result is:

(A B) -> (C D)

(A C) -> (B D)

(A D) -> (B C)

(B C) -> (A D E)

(B D) -> (A C E)

(B E) -> (C D)

(C D) -> (A B E)

(C E) -> (B D)

(D E) -> (B C)

73

Having calculated

this information, we

know the friends in

common between

any pairs of persons.

For example: A

and D have the

friends B and C in

common

Key Value

A third example - conclusion

 In this example, we have explained how the
MapReduce framework can be used to
calculate common friends in a social network.

 Why doing this?

◦ Big social networks such as LinkedIn have a lot of
money.

◦ By precaculating (预先计算) information about
common friends, a social network can provide the
information more quickly to users.

◦ This can be recalculated every day.

74

4.8-CLOUD FOR
SCIENCE AND
ENGINEERING

75

Cloud for science/engineering

 In the last 2000 years, science was

mostly empirical.

 In recent decades, computational

science (计算科学) has emerged where

computers are used to simulate

complex phenomena.

 Science may now combine:

◦ theory, experiment, and simulation (仿真)

76

4.8

Cloud for science/engineering

Generic problems involving data, in
science:

• Collecting experimental data.

• Managing very large volumes of data.

• Building and executing models.

• Integrating data and literature.

• Documenting experiments.

• Sharing the data with others; data
preservation for long periods of time.

77All these activities require powerful computing systems.

Cloud for science/engineering

Example of large databases:

 The Chinese National Space

Administration may collect huge amount of

data about space using various equipment.

 The Chinese Meteorological

Administration may collect huge amount of

data about the weather.

The cloud is useful to analyze such large amount

of data.

78

Biology research

 Cloud computing is very important for biology

research.

◦ Computation of molecular dynamics is CPU

intensive.

◦ Protein alignment (蛋白质序列) is data-intensive.

 An example →

79

Biology research - example

Using 3,700 instances, a task that would took about 7

years on a single computer was done in 14 days!

80

ADDITIONAL
INFORMATION

81

Introduction

 Last week, we talked about MapReduce.

 MapReduce is a model to create cloud applications.

 It is used for developing applications that can be used in

the cloud.

 It is called MapReduce because there are two steps called

“Map” and “Reduce”.

82

Reading

data
Map Writing

data
Reduce Writing

data

Introduction

 MapReduce is a popular model.

 There are many other models for developing

cloud applications.

 For example:

◦ Apache Spark

◦ Apache Storm

◦ …

83

Apache SPARK

 Spark is more complicated than MapReduce.

 Spark offers more than 100 operators to

transform data.

 Spark can be used with the Java, Python and

Scala programming languages

(编程语言).

84

Apache SPARK

 A problem of MapReduce is that it reads and write
data many times to the storage 存储 (before and
after each Map or Reduce operation).

 This can make a cloud application slower.

 Solution:
◦ Using Spark, data can be kept in memory.

◦ In other words, data is not read and written many times.

◦ Spark can read and transform data. However, Spark is
“lazy”. It only read and transform data when an action
needs to be performed on the data.

85

Reading

data
Map Writing

data
Reduce Writing

data

Apache SPARK

 When Spark transforms data, the data is then stored

in a structure called:

Resilient Distributed Dataset (RDD).

Resilient = 能复原的
Distributed = 分布式
Dataset = 数据

 All the transformations that are applied to data are

remembered so that a dataset can be recovered if

some failure happen.

86

Conclusion

 In this part, I have presented the

MapReduce model, which is widely used

for cloud computing.

 The first assignment is announced today.

87

http://philippe-fournier-viger.com/COURSES/CLOUD/

http://philippe-fournier-viger.com/COURSES/CLOUD/

References

 Chaptre 4. D. C. Marinescu. Cloud Computing

Theory and Practice, Morgan Kaufmann, 2013.

 http://stevekrenzel.com/finding-friends-with-

mapreduce

 https://hadoop.apache.org/docs/r1.2.1/mapred_t

utorial.html

88

http://stevekrenzel.com/finding-friends-with-mapreduce
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

