Lecture #5

S ENAI]
Introduction to Cloud Computing
GESCI1001

Philippe Fournier-Viger
Professor

School of Humanities and Social Sciences

philfv8@yahoo.com

Fall 2020

mailto:philfv8@yahoo.com

Course schedule

Part | Introduction and overview

Part 2 Distributed and parallel systems

Part 3 Cloud infrastructure

Part 4 Cloud application paradigm (1)

Part 5 Cloud application paradigm (2)

Part 6 Cloud virtualization and resource management
Part 7 & 8 Cloud computing storage systems

Cloud computing security

Final exam

Introduction

Last week:

> Review

- Chapter 4: Cloud application paradigm (part |)
Today:

o Chapter 4: Cloud applications
(part 2) — the Map Reduce model

e Assignment |

How to ask questions

We can discuss immediately after lectures

You may use the QQ group to contact
teaching assistants

My e-mail: philfv8@yahoo.com

4-CLOUD APPLICATIONS

(ZRIA)
PART 2

4.6
Introduction

* We discussed challenges for developing cloud
applications

* Today, we will talk about the details of how cloud
applications are created.

* To make cloud applications, the MapReduce
model is very popular.

¢ It is a“programming model” (wizt=RE -a
way of developing applications for the cloud).

* |t was proposed by Google in a research paper,
published in 2004.

MapReduce: Simplified Data Processing on Large Clusters,Jeffrey Dean and Sanjay

Ghemawat, OSDI'04: Sixth Symposium on Operating System Design and Implementation, San
Francisco, CA, December, 2004.

Introduction

Why MapReduce is popular?

e Because it is a simple programming model.

* A programmer ($£/551) can easily write an
application that run on a distributed system (the

cloud), without much experience about how
distributed systems work.

Clouc

Cloud
Application
(=R A)

Programmer (12F 51) @

Introduction

* One of the most popular version of
MapReduce is Hadoop.

e It is an open-source (FFHUERD)
implementation of MapReduce.

* | will explain the main idea.
* We will also discuss three examples.

mailto:http://hadoop.apache.org/

Introduction

e The main advantage of the cloud is
elasticity (= BV TF) .
> Using as many computers as needed to

address the cost (J1) and timing constraints
of an application.

> Sharing the workload (T {Efa%{) between
several computers.

° [t must be divided into sub-tasks that can be
accomplished in parallel by several
computers.

e But how to do this!?

Introduction

. The workload should be divided

(97 BC) approximately equally between

compute I'S.
Workload

Introduction

e Partitioning (57HC) the workload is
not always easy.

 Three main types of workloads:

- modularly divisible (R 7 E)
worlload: the workload is already divided
into sub-tasks.

o arbitrarily divisible (FJ{EEX47)
worlload: the workload can be partitioned
into an arbitrarily large number of sub-tasks
of equal or similar size.

o Others.

Map Reduce

e Designed for arbitrarily divisible
(FIfEEXI57T) workloads.

o lti s used to perform parallel processing

(FE1TALIE) for data-intensive (HiEZER)
ap 3I|cat|ons

* It has many applications: e.g. physics, biology,
etc.

* Once a cloud applications is created using
MapReduce, it can run in the cloud on as many
computers as needed.

Basic idea of MapReduce

— Phase | (Map)
|. Split the data into blocks

2. Assign each block to an instance (S27)
(e.g.a computer or virtual machine)

3. Run these instances in parallel

Basic idea of MapReduce

— Phase | (Map)
|. Split the data into blocks

2. Assign each block to an instance (S27)
(e.g.a computer or virtual machine)

3. Run these instances in parallel

Data
Partl|

Data
Part2

——>

Data
Part3

Basic idea of MapReduce

Phase | (Map)
|. Split the data into blocks

2. Assign each block to an instance (S27)
(e.g.a computer or virtual machine)

3. Run these instances in parallel

Basic idea of MapReduce

Phase | (Map)
|. Split the data into blocks

2. Assign each block to an instance (S27)
(e.g.a computer or virtual machine)

3. Run these instances in parallel

Basic idea of MapReduce

Phase 2 (Reduce)

. Once all the instances have finished their sub-
tasks, they send their results.

2. Results are merged to obtain the final result.

Basic idea of MapReduce

Phase 2 (Reduce)

. Once all the instances have finished their sub-
tasks, they send their results.

2. Results are merged to obtain the final result.

Basic idea of MapReduce

— Phase 2 (Reduce)

. Once all the instances have finished their sub-
tasks, they send their results.

2. Results are merged to obtain the final result.

|

Result
2

Result
3

Result _

Basic idea of MapReduce

— Phase 2 (Reduce)

. Once all the instances have finished their sub-
tasks, they send their results.

2. Results are merged to obtain the final result.

Result

Who split the data and the gather

results?

e A “master instance”

data.

takes care of splitting the

Data
Partl|

Master

- Data
Part2

Data
Part3

* Merging the results can be done by a set of
instances called the “reducing instances”

RI| Rl 2

—

—

Result I

21

How data is represented!?

The input data (3 A\ %7

files.

/

5) can be any kind of

But it is converted to a set of

<key, value> pairs (JE2{EXY).

e.g.: (key= CN, value = Shenzhen)
(key= CN, value = Beijing)

A key (5#) is some information that is used to group values

together.

How data is represented!?

The output data (fijHiZ(3E) is a also set of
<key, value> pairs.

e.g.: (key= CN, value = Shenzhen)
(key= CN, value = Beijing)

A key (5#) is some information that is used to group values
together.

MapReduce

* MapReduce is a programming model
(Rizt=EY)
e It is inspired by the Map and the Reduce
operations of the LISP programming language.

* It is designed to process large datasets on
computing clusters (the cloud - =%).

* It is often used with the Java language.

e A programmer has to define map() and
reduce() functions

A simple example

~— Consider that we want to count how many
times each word appear in a very large text
document.

‘““Hello world, bye
world,

Hello cloud,
goodbye cloud”

A simple example

The master instance first splits the data into M data
blocks.

Partl|

‘““Hello world, bye
‘““Hello world, bye world”

world,
Hello cloud, C
goodbye cloud”

= Part2

Master instance
‘““Hello cloud, goodbye cloud”

A simple example

— Then, it starts M mapping instances and gives a
data block to each instance.

Mapping instances

Fart|) (A
‘““Hello world, bye

world, ‘““Hello world, bye world” —

Hello cloud, C
goodbye cloud”
— Part2 I 5

Master instance
““Hello cloud, goodbye cloud” =

A simple example - map

e All instances work in parallel.
o Consider the first instance. It reads its data.

o It creates a <key,value> pair (${EX) for each
word that it reads. A key (i) is a word and the
corresponding value ({E) is the number |.

‘““Hello world, bye world”

~ &

—— Partl
<Hello, I>
<World, 1>
<Bye, |>

<World, |>

A simple example - map

e Some words like “World” appear multiple times
in the result.

e All values that have the same key are grouped
together.

““Hello world, bye world”

~ &

—— Partl
<Hello, 1> <Hello, 1>
<World, 1>) <World, 2>
<Bye, 1> <Bye, I>

<World, | >

A simple example - map

e Consider the second instance.

e The second instance reads its data.

* |t creates a <key,value> pair for each word that it
reads.A key is a word and the corresponding value is
the number |.

““Hello cloud, goodbye cloud”

<Hello, I>
<Cloud, I>
<Goodbye, |I>
<Cloud, |I>

A simple example - map

Then, the second instance groups all values that
have the same key together.

““Hello cloud, goodbye cloud”

<Hello, I> <Hello, I>
<Cloud, |> EEEE) <Cloud, 2>
<Goodbye, |> < Goodbye, |>
<Cloud, |>

A simple example

So until now, we have:

—

<H

ello, |>

<World, 2>
<Bye, I>

—

<Hello, I>
<Cloud, 2>
<Goodbye, |>

Next, the reduce phase will combine
the local results found by all instances. =

A simple example - reduce

 The master instance will start R reducing instances for
combining results of mapping instances.

* |n this example, only one reducing instance is used (instance
D)

—

—

<Hello, I>
<World, 2>
<Bye, I>

<Hello, >
<Cloud, 2>
<Goodbye, |>

—

Reducinginstance

A simple example - reduce

This is the
final result!

—

Reducinginstance

<Hello, 2>

<Cloud, 2>
<World, 2>
<Bye, |>

<Goodbye, |I>

A simple example

This is the code for this example:

map (String key, String value) :
//key: document name; wvalue: document contents
for each word w 1in wvalue:
EmitIntermediate (w, "1");

Combine local results

reduce (String key, Iterator values):
// key: a word; values: a list of counts
int result =0;
for each v 1in wvalues:
result += ParseInt (v);
Emit (AsString (result));

The MapReduce Application
Process
\J
Master instance
2
1 1 7
4 ™
Map
Segment 1 instance 1 ocal dis
Reduce
< 5 _ Map instance 1 [
cgmen instance 2 ocal dis Shared
Map Reduce) storage
Segment 3 instance 3 ocal dis instance 2
Shared
storage
Reduce ,/
3 4 5 instance R 6
. Map -
Segment M | instance M / Local dis
Input data \l@) phyé Raduce phgphe

—

(1) An application starts a master instance and M worker instances for the Map
phase and, later; R worker instances for the Reduce phase.

The MapReduce
Process

Application

Master instance

f
/Segment L " instance 1
J Reduce
o . _ Map instance 1 [
cgment instance 2 Shared
Map Reduce) storage
Segment 3 instance 3 instance 2
Shared
storage
Reduce P
3 4 5 instance R 6
. Map g—-‘
Segment M instance M m
I Map phase Reduce phase

(2) The master split (53'B2) the input data in M segments (parts).

The MapReduce
Process

Application

Master instance

f /

/égment 1

instance 1
Reduce

C [y
instance 1

. Map

Segment 2 instance 2 Shared
1 Map Reduce |} SR

Segment 3 instance 3 ocal dis instance 2
Shared
storage

Reduce P
3 5 instance R 6

Map -

e
instance M m

;p phase Reduce phase

(3) Each Map instance reads its input data segment and
processes the data

*{mem M

Input

The MapReduce Application
Process
1
Master instance
N\
2
A% 7
4 ™
Map “g—"‘i
Segment | " instance 1 ’M‘ Pod
educe
< 5 . Map g instance 1 [
egment instance 2 ‘. Shared
Map A Reduce |} S
Segment 3 " instance 3 m ' instance 2
Shared
storage
Reduce |
3 4 instance R 6
. Map “g -
Segment M instance M \m
Input data Map phase ' Reduce phase

(4) The local results are stored on the local disks of the computers
where the Map instances are executed.

The MapReduce Application
Process
1
Master instance
7 N
2
1 7
e \\
Map —
Segment 1 " instance 1 m
Reduce
S . . Map instance 1 [
egment instance 2 \ » Shared
Map " Reduce storage
Segment 3 [instance 3 instance 2
Shared
storage
Reduce
3 4 instance R
. Map
Segment M instance M
Input data Map phase

(5) The R reduce instances read the local results and merge the

results.

The MapReduce il g
Process
1
Master instance
— N
2
1 |
4 ™
S t1 Map —
cemen instance 1 m d
Reduce
S) . Map — instance 1 [] <P
Sz instance 2 m Shared ‘
S X Map - Reduce) storage
instance 3 instance 2 >
Shared 1
storage
Reduce
3 4 5 \instance R | 6
| Map — h
Segment M instance M m
Input data Map phase Reduce phasg

(6) The final results are written by the Reduce instances to a
shared storage (FZFETFfE)

The MapReduce
Process

/ﬁaster instance

—F N
2
1
4 ™
Map
Segment 1 " instance 1
S - . Map g‘:
cgment instance 2 Shared ‘
Map S storage
Segment 3 instance 3 m

Reduce
\instance R |

Map - A

e
instance M m

Input data Map phase Reduce phasg

Segment M

(7) The master instance monitors the Reduce instances and. When all of them
have finished, it is the END.

More details

» The data is usually split in blocks of
16 MB to 64 MB (megabytes - JKETH).

» The number of instances can be a few to
hundreds, or thousands of instances.

» What if some instances crashes? =

Lo

What happen if an instance fails?

e Fault-tolerance (& $8): to

ensure that a task is

accomplished properly even if some machines stop

working.

e The master instance asks each worker machine

about their state
(idle Z5 [HAR7, in-progress]

IF f£1#1T, or completed

FEA{ESS) and identity.

e If the worker machine does not respond, the master
instance considers that this machine’s sub-task has

failed.

Master state?

| T

—

What is your %

What happen if an instance fails?

» A task in progress (IE7£17t17) on a failed
worker is set to idle (Z[FIRE).

e The task can then be given to another worker
(computer).

* The master writes takes of note of the tasks
that have been completed.

* The data is stored using the
GFS (Google File System).

What is a typical MapReduce machine in a
cluster?

According to the book, in 2012, a typical

computer for experimenting with MapReduce has
the following characteristics:

* dual-processor x86 running Linux,
e 24 GB of memory,
e Network card: 100—-1,000 Mbps.

» Data is stored on IDE 7 disks attached directly to
individual machines.

» The file system uses replication (2 l)

What is a typical MapReduce machine in a

cluster?

e A cluster consists of hundreds or thousands

of machines.
* |t provides availability (7] |

%) and

reliability (F] &) using unreliable

hardware.

e The input data is stored on the local disk
of each instance to reduce communication

between computers.

A second example

— Task:analyze a text to count how many
words with | letters, with 2 letters, with 3
letters, with 4 letters...

‘““Hello world, bye
world,

Hello cloud,
goodbye cloud”

A second example

— The master instance first splits the data into M
data blocks. Here M = 2.

Partl|

‘““Hello world, bye
‘““Hello world, bye world”

world,
Hello cloud, C
goodbye cloud”

= Part2

Master instance
‘““Hello cloud, goodbye cloud”

A second example

= Then, it starts M instances and gives a data block
to each instance.

Mapping instances

Fart|) (A
‘““Hello world, bye

world, ‘““Hello world, bye world” —

Hello cloud, C
goodbye cloud”
— Part2 I 5

Master instance
““Hello cloud, goodbye cloud” =

50

A second example - map

All instances work in parallel.

Consider the first instance. The first instance reads its
data. It creates a <key,value> pair for each word that it
reads. A key is the number of letters in the word and the
value is the word.

A

‘““Hello world, bye world”

<5, Hello>
<5,World>
<3, Bye>

<5,World>

A second example - map

Some words like “World” appear multiple times in the
result.

All values that have the same key are grouped together.

““Hello world, bye world”

<5, Hello> <3, Bye>
<5,World> EE) <5,World, World,
<3, Bye> Hello>

Note: value having the

same key are automatically <5, World>
grouped

A second example - map

Consider the second instance.

The second instance reads its data. It creates a
<key,value> pair for each word that it reads, where a key
is a number of letters and the corresponding value is a
word.

““Hello cloud, goodbye cloud”

<5, Hello>
<5, Cloud>
<7,Goodbye>
<5, Cloud>

A second example - map

Then, all values that have the same key are
grouped together.

““Hello cloud, goodbye cloud”

<5, Hello> <5, Hello, Cloud,
<5, Cloud> :> Cloud>
<7,Goodbye> <7, Goodbye>

Note: value having the
same key are automatically <5, Cloud>
grouped

A second example

So until now, we have:

A B
<3, Bye> <5, Hello, Cloud, Cloud>
<5, World,World, Hello> <7, Goodbye>

Now, the reduce phase will take place to combine
the local results found by each instance

A second example - reduce

* The master instance starts R reducing instances for
combining results of mapping instances.

* |n this example, only one reducing instance is used (instance
D)

—

<3, Bye> <5, Hello, Cloud, Cloud>
<5,World,World, Hello> <7, Goodbye>

L I 4

D

—

Reducinginstance

A second example - reduce

The result is shown below. It means that there is one word
containing three letters, six words containing five letters,
and one word containing seven letters.

A B
<3, Bye> <5, Hello, Cloud, Cloud>
<5,World,World, Hello> <7, Goodbye>

This is the I |

< >

final result! D 3
| <5, 6>
— <7 1>

Reducinginstance

A third example

» Consider a social network (1 & [4%)
like Wechat, QQ, LinkedIn where you

can be friend with other people.

e If you are a LinkedIn user and you view
the LinkedIn page of a friend, the page will
indicates how many friends you have
in common.

e lllustration =2

Q Advanced

Profile My Network Learning Jobs EES S Business Services Upgrade S | Engiis

P

"4 .
s P/

This is the profile page of one of my former Master degree
students.When | click on his page, | see that we have 10
“friends” in common.

In Common with '

Software Engineer at Amazon and Data Incubator Fell
Seattle, Washington | Computer Software

Current Amazon
Previous Clareity Security, nGauge inc. Xololo Inc. and Vox Interactif
Inc.
Education Université de Moncton
|
RONNE z‘gfg‘
[hitps:/wwwlinkedin.com/intedgueniche Bm Contactinfo Skills & Expertise

Background
Field of Study
a Experience

Software Development Engineer
Amazon

August 2016 — Present (3 months) | Greater Seattle Area

People Similar to

Software Engineer C|al‘§it Richard Savoie 2n
Clareity Security e e Software Developer, Consuitant at IGT

A third example

e Suppose that we have a social network with five
users: A,B,C,D, E

» We assume that friendship (&1) is a
bidirectional relationship (X [5]k AR).

* In other words, if you are a friend of someone,
s/he is also your friend.

e Assume that this is
the friendship graph:

A third example

Assume that data about friendship between
users is stored in a text file as follows:

cA->BCD
eB->ACDE
e C->ABDE
eD->ABCE
eE->BCD

A third example

The data file will be split and sent to
various mapping instances.

Mapping instances will process each line
that they receive as follows: =2

A third example - map

The first line A -> B C D is transformed

as: Key Value
(AB)->BCD

(AC)->BCD
(AD)->BCD

by combining A with each of his friend.

A third example - map

~ The second line B ->A C D E is transformed

as.

Key Value

(AB)->ACDE
(BC)->ACDE
(BD)->ACDE
(BE)->ACDE

A third example - map

~ The third line C ->A B D E is transformed

as.

Key Value

(AC)->ABDE
(BC)->ABDE
(CD)->ABDE
(CE)->ABDE

A third example - map

~ The fourth line D -> A B C E is transformed

as.

Key Value
(AD)->ABCE

(BD)->ABCE
(CD)->ABCE
(DE)->ABCE

A third example - map

— The fifth line E -> B C D is transformed as:

Key Value
(BE)->BCD

(CE)->BCD
(DE)->BCD

A third example — map (sort)

The values are then grouped by their key:

e (AB)->(ACDE) (BCD)
« (AC)->(ABDE) (BCD)
e (AD)->(ABCE) (BCD)
« BC)->(ABDE)(ACDE)
« BD)->(ABCE)(ACDE)
e (BE)-> (ACDE)(BCD)
« (CD)->(ABCE)(ABDE)
« (CE)->(ABDE) (BCD)
« (DE)->(ABCE) (BCD)

Furthermore, they are sorted (as above)

A third example - reduction

. This data is then split and sent to reducers

« (AB) -> (A CDE) (BCD)
« (AC)->(ABDE) (BCD)
« (AD)->(ABCE) (BCD)
« BC)->(ABDE)(ACDE)
« (BD)->(ABCE)(ACDE)
« (BE)->(ACDE) (BCD)
 (CD)->(ABCE)(ABDE)
« (CE)->(ABDE) (B C D)
« (DE)-> (ABCE) (B CD)

A third example - reduction

Each reducer will intersect the list of
value on each line:

The first line:
(AB)->(ACDE) (BCD)
will thus become:

(A B) -> (C D)

A third example - reduction

Each reducer will intersect the list of
value on each line:

The second line:
(AC)->(ABDE) (B CD)
will thus become:
(AC)->(BD)
and so on....

A third example — final result

The final result is:
Key Value

(A B) -> (C D)
(A C) -> (B D)
(A D) -> (B C)
(B C) -> (A D E)
(B D) -> (A C E)
(B E) -> (C D)
(C D) -> (AB E)
(CE)-> (B D)
(D E) -> (B C)

A third example — final result

The final result is: .
Having calculated

(Keé) -> (C [\)/;;me this information, we
(A C) -> (B D) know the friends in

| AD)->BC) | common between
(BC)->(ADE) any pairs of persons.
(B D) -> (A CE)
(B E) -> (C D) For example: A
(CD)->(ABE) and D have the
(C E) -> (B D) friends B and C in

(DE)->(BC) common

A third example - conclusion

* In this example, we have explained how the
MapReduce framework can be used to
calculate common friends in a social network.

* Why doing this?
> Big social networks such as LinkedIn have a lot of
money.

> By precaculating (F15t1t5) information about
common friends, a social network can provide the
information more quickly to users.

° This can be recalculated every day.

4.8-CLOUD FOR
SCIENCE AND
ENGINEERING

A

4.8
Cloud for science/engineering

* In the last 2000 years, science was
mostly empirical.

* In recent decades, computational
science (TTHEELZE) has emerged where
computers are used to simulate
complex phenomena.

 Science may now combine:

> theory, experiment, and simulation ({7 E)

Cloud for science/engineering

Generic problems involving data, in
science:

* Collecting experimental data.

* Managing very large volumes of data.
* Building and executing models.

* Integrating data and literature.

* Documenting experiments.

* Sharing the data with others; data
preservation for long periods of time.

All these activities require powerful computing systems.

Cloud for science/engineering

Example of large databases:

e The Chinese National Space
Administration may collect huge amount of
data about space using various equipment.

e The Chinese Meteorological
Administration may collect huge amount of
data about the weather.

The cloud is useful to analyze such large amount
of data.

Biology research

* Cloud computing is very important for biology

research.

- Computation of molecular dynamics is CPU

intensive.

> Protein alignment (%

* An example 2

-—
=3
=y

[—

/&R F %) is data-intensive.

Biology research - example

An experiment carried out by a group from Microsoft Research illustrates the importance of cloud
computing for biology research [223]. The authors carried out an “all-by-all” comparison to identify
the interrelationship of the 10 million protein sequences (4.2 GB size) in the National Center for
Biotechnology Information (NCBI) nonredundant protein database using AzureBLAST, a version of the
BLAST* program running on the Azure platform [223].

Azure offers VMs with four levels of computing power, depending on the number of cores: small
(1 core), medium (2 cores), large (& cores), and extra large (=8 cores). The experiment used & core
CPUs with 14 GB RAM and a 2 TB local disk. It was estimated that the computation would take six to
seven CPU-years; thus, the experiment was allocated 3,700 weighted instances or 475 extra-large VMs
from three data centers. Each data center hosted three Azure BLAST deployments, each with 62 extra-
large instances. The 10 million sequences were divided into multiple segments, and each segment was
submitted for execution by one Azure BLAST deployment. With this vast amount of resources allocated,
it took 14 days to complete the computations, which produced 260 GB of compressed data spread across
more than 400,000 output files.

Using 3,700 instances, a task that would took about 7
years on a single computer was done in 14 days!

ADDITIONAL
INFORMATION

Introduction

 Last week, we talked about MapReduce.
e MapReduce is a model to create cloud applications.

e It is used for developing applications that can be used in
the cloud.

e It is called MapReduce because there are two steps called
“Map” and “Reduce”’.

Reading el Map | = Writing | Reduce H Writing

data data data

Introduction

» MapReduce is a popular model.

e There are many other models for developing
cloud applications.

* For example:
- Apache Spark
o Apache Storm

o

Apache SPARK Spar

e Sparlk is more complicated than MapReduce.

» Sparlk offers more than 100 operators to
transform data.

e Spark can be used with the Java, Python and
Scala programming languages

(éﬁﬁfln =

-
Apache SPARK Spark’

* A problem of MapReduce is that it reads and write
data many times to the storage 17fi# (before and
after each Map or Reduce operation).

Reading a Map 9 Writing % Reduce HWriting

data data data

e This can make a cloud application slower.

» Solution:
> Using Spark, data can be kept in memory.
° |In other words, data is not read and written many times.

o Spark can read and transform data. However, Spark is
“lazy”. It only read and transform data when an action
needs to be performed on the data.

-
Apache SPARK Spark’

* When Spark transforms data, the data is then stored

in a structure called:
Resilient Distributed Dataset (RDD).

Resilient = BEE R EY
Distributed = 5% T\

Dataset = 23R

* All the transformations that are applied to data are
remembered so that a dataset can be recovered if

some failure happen.

— — |

Conclusion

* In this part, | have presented the
MapReduce model, which is widely used
for cloud computing.

* The first assignment is announced today.

0
kB A,
L

http://philippe-fournier-viger.com/COURSES/CLOUD/

References

e Chaptre 4. D. C. Marinescu. Cloud Computing
Theory and Practice, Morgan Kaufmann, 201 3.

http://stevekrenzel.com/finding-friends-with-mapreduce
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

