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Introduction

Last week:

◦ Review

◦ Chapter 4: Cloud application paradigm (part 1)

Today:

 Chapter 4: Cloud applications

(part 2) – the Map Reduce model

 Assignment 1
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How to ask questions

We can discuss immediately after lectures

You may use the QQ group to contact 

teaching assistants

My e-mail: philfv8@yahoo.com
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4-CLOUD APPLICATIONS 

(云应用)

PART 2
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Introduction

 We discussed challenges for developing cloud
applications

 Today, we will talk about the details of how cloud
applications are created.

 To make cloud applications, the MapReduce
model is very popular.

 It is a “programming model” (编程模型 - a 
way of developing applications for the cloud).

 It was proposed by Google in a research paper, 
published in 2004.

MapReduce: Simplified Data Processing on Large Clusters,Jeffrey Dean and Sanjay 
Ghemawat, OSDI'04: Sixth Symposium on Operating System Design and Implementation, San 
Francisco, CA, December, 2004.
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Introduction
Why MapReduce is popular?

 Because it is a simple programming model. 

 A programmer (程序员) can easily write an 

application that run on a distributed system (the 

cloud), without much experience about how 

distributed systems work.
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Cloud 

Application

(云应用)

Programmer (程序员)

Cloud (云）



Introduction

 One of the most popular version of 

MapReduce is Hadoop.

 It is an open-source (开放源码)

implementation of MapReduce.

 I will explain the main idea.

 We will also discuss three examples.

8http://hadoop.apache.org/
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Introduction

 The main advantage of the cloud is 
elasticity (云的弹性) .
◦ Using as many computers as needed to 

address the cost (元) and timing constraints 
of an application.

◦ Sharing the workload (工作负载) between 
several computers.

◦ It must be divided into sub-tasks that can be 
accomplished  in parallel by several 
computers.

 But how to do this?
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Introduction

The workload should be divided

(分配) approximately equally between 

computers.
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Workload



Introduction

 Partitioning (分配) the workload is 
not always easy.

 Three main types of workloads:

◦ modularly divisible (模块化分割 ) 
workload: the workload is already divided 
into sub-tasks.

◦ arbitrarily divisible (可任意划分) 
workload: the workload can be partitioned 
into an arbitrarily large number of sub-tasks 
of equal or similar size.

◦ Others.
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Map Reduce

 Designed for arbitrarily divisible 
(可任意划分) workloads.

 It is used to perform parallel processing 
(并行处理) for data-intensive (数据密集型) 
applications.

 It has many applications: e.g. physics, biology, 
etc.

 Once a cloud applications is created using 
MapReduce, it can run in the cloud on as many 
computers as needed.
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Basic idea of MapReduce

Phase 1  (Map)

1. Split the data into blocks

2. Assign each block to an instance (实例)

(e.g. a computer or virtual machine)

3. Run these instances in parallel

1313
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Basic idea of MapReduce

Phase 1  (Map)

1. Split the data into blocks

2. Assign each block to an instance (实例)

(e.g. a computer or virtual machine)

3. Run these instances in parallel
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Basic idea of MapReduce

Phase 2 (Reduce)

1. Once all the instances have finished their sub-

tasks, they send their results. 

2. Results are merged to obtain the final result.
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Basic idea of MapReduce

Phase 2 (Reduce)

1. Once all the instances have finished their sub-

tasks, they send their results. 

2. Results are merged to obtain the final result.
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Who split the data and the gather 

results?

 A “master instance” takes care of splitting the 

data.

 Merging the results can be done by a set of 

instances called the “reducing instances”
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How data is represented?

The input data (输入数据) can be any kind of 
files. 

But it is converted to a set of 
<key, value>  pairs (键值对).

e.g.: (key= CN,  value = Shenzhen)

(key= CN, value = Beijing)

…..

22

A key (键) is some information that is used to group values 

together. 



How data is represented?

The output data (输出数据) is a also set of 

<key, value> pairs.

e.g.: (key= CN,  value = Shenzhen)

(key= CN, value = Beijing)

…..

23

A key (键) is some information that is used to group values 

together. 



MapReduce

 MapReduce is a programming model 

(编程模型)

 It is inspired by the Map and the Reduce

operations of the LISP programming language.

 It is designed to process large datasets on 

computing clusters (the cloud –云).

 It is often used with the Java language.

 A programmer has to define map() and 

reduce() functions
24



A simple example

Consider that we want to count how many 

times each word appear in a very large text 

document.
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Text

“Hello world, bye 

world,

Hello cloud, 

goodbye cloud”



A simple example

The master instance first splits the data into M data 

blocks.
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“Hello world, bye 

world,
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A simple example

Then, it starts M mapping instances and gives a 

data block to each instance.
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world,
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A simple example - map

 All instances work in parallel.

 Consider the first instance. It reads its data. 

 It creates a  <key,value> pair (键值对) for each 

word that it reads. A key (键) is a word and the 

corresponding value (值) is the number 1.

Part1 

“Hello world, bye world”A

<Hello, 1>

<World, 1>

<Bye, 1>

<World, 1>



A simple example - map

 Some words like “World” appear multiple times 

in the result.

 All values that have the same key are grouped 

together. 

Part1 

“Hello world, bye world”A

<Hello, 1>

<World, 1>

<Bye, 1>

<World, 1>

<Hello, 1>

<World, 2>

<Bye, 1>



A simple example - map

 Consider the second instance. 

 The second instance reads its data. 

 It creates a  <key,value> pair for each word that it 

reads. A key is a word and the corresponding value is 

the number 1.

Part1 
“Hello cloud, goodbye cloud”B

<Hello, 1>

<Cloud, 1>

<Goodbye, 1>

<Cloud, 1>



A simple example - map

Then, the second instance groups all values that 

have the same key together. 

Part1 “Hello cloud, goodbye cloud”
B

<Hello, 1>

<Cloud, 1>

<Goodbye, 1>

<Cloud, 1>

<Hello, 1>

<Cloud, 2>

< Goodbye, 1>



A simple example

So until now, we have: 
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BA

<Hello, 1>

<World, 2>

<Bye, 1>

<Hello, 1>

<Cloud, 2>

<Goodbye, 1>

Next, the reduce phase will combine 

the local results found by all instances.  →



A simple example - reduce
 The master instance will start R reducing instances for 

combining results of mapping instances.

 In this example, only one reducing instance is used (instance 

D)
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BA

<Hello, 1>

<World, 2>

<Bye, 1>

<Hello, 1>

<Cloud, 2>

<Goodbye, 1>

D

Reducinginstance



34

BA

<Hello, 2>

<Cloud, 2>

<Bye, 1>
D

Reducinginstance

<World, 2>
This is the 

final result!

A simple example - reduce

<Goodbye, 1>



A simple example

This is the code for this example:
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Combine local results



MapReduce in more details

36

(1) An application starts a master instance and M worker instances for the Map 

phase and, later, R worker instances for the Reduce phase. 

The MapReduce

Process



MapReduce in more details
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(2) The master split (分配) the input data in M segments (parts).

The MapReduce

Process



MapReduce in more details
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(3) Each Map instance reads its input data segment and 

processes the data

The MapReduce

Process



MapReduce in more details
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(4) The local results are stored on the local disks of the computers 

where the Map instances are executed.

The MapReduce

Process



MapReduce in more details
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(5) The R reduce instances read the local results and merge the 

results. 

The MapReduce

Process



MapReduce in more details
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(6) The final results are written by the Reduce instances to a 

shared storage (共享存储)

The MapReduce

Process



MapReduce in more details
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(7) The master instance monitors the Reduce instances and. When all of them 

have finished,  it is the END.

The MapReduce

Process



More details

 The data is usually split in blocks of 

16 MB to 64 MB (megabytes -兆字节).

 The number of instances can be a few to 

hundreds, or thousands of instances.

 What if some instances crashes? →

43



What happen if an instance fails?

 Fault-tolerance (容错): to ensure that a task is 
accomplished properly even if some machines stop 
working.

 The master instance asks each worker machine 
about their state
(idle 空闲状态, in-progress 正在进行, or completed 
完成任务) and identity. 

 If the worker machine does not respond, the master 
instance considers that this machine’s sub-task has 
failed.

44

Master

What is your

state?
…



What happen if an instance fails?

 A task in progress (正在进行) on a failed 

worker is set to idle (空闲状态).

 The task can then be given to another  worker 

(computer).

 The master writes takes of note of the tasks 

that have been completed. 

 The data is stored using the 

GFS (Google File System).
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What is a typical MapReduce machine in a 

cluster?

According to the book, in 2012, a typical 

computer for experimenting with MapReduce has 

the following characteristics:

 dual-processor x86 running Linux,

 2–4 GB of memory,

 Network card: 100–1,000 Mbps. 

 Data is stored on IDE 7 disks attached directly to 

individual machines. 

 The file system uses replication (复制)
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What is a typical MapReduce machine in a 

cluster?

 A cluster consists of hundreds or thousands 

of machines.

 It provides availability (可利用性) and 

reliability (可靠) using unreliable

hardware. 

 The input data is stored on the local disk 

of each instance to reduce communication 

between computers.
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A second example

Task: analyze a text to count how many 

words with 1 letters, with 2 letters, with 3 

letters,  with 4 letters…  

48

Text

“Hello world, bye 

world,

Hello cloud, 

goodbye cloud”



A second example

The master instance first splits the data into M 

data blocks.  Here M = 2.
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Text

“Hello world, bye 

world,

Hello cloud, 

goodbye cloud”

Part1 

Part2

“Hello world, bye world”

“Hello cloud, goodbye cloud”

C

Master instance



A second example

Then, it starts M instances and gives a data block 

to each instance.

50

Text

“Hello world, bye 

world,

Hello cloud, 

goodbye cloud”

Part1 

Part2

“Hello world, bye world”

“Hello cloud, goodbye cloud”

A

B

C

Master instance

Mapping instances



A second example - map

All instances work in parallel.

Consider the first instance. The first instance reads its 

data. It creates a  <key,value> pair for each word that it 

reads. A key is the number of letters in the word and the 

value is the word.

Part1 “Hello world, bye world”
A

<5, Hello>

<5, World>

<3, Bye>

<5, World>



A second example - map

Some words like “World” appear multiple times in the 

result.

All values that have the same key are grouped together. 

Part1 “Hello world, bye world”
A

<3, Bye>

<5, World, World, 

Hello>

<5, Hello>

<5, World>

<3, Bye>

<5, World>
Note: value having the 

same key are automatically 

grouped 



A second example - map

Consider the second instance. 

The second instance reads its data. It creates a  

<key,value> pair for each word that it reads, where a key

is a number of letters and the corresponding value is a 

word.

Part1 “Hello cloud, goodbye cloud”
B

<5, Hello>

<5, Cloud>

<7,Goodbye>

<5, Cloud>



A second example - map

Then, all values that have the same key are 

grouped together. 

Part1 “Hello cloud, goodbye cloud”
B

<5, Hello, Cloud, 

Cloud>

<7, Goodbye>

<5, Hello>

<5, Cloud>

<7,Goodbye>

<5, Cloud>
Note: value having the 

same key are automatically 

grouped 



A second example

So until now, we have: 

55

BA

Now, the reduce phase will take place to combine 

the local results found by each instance

<5, Hello, Cloud, Cloud>

<7, Goodbye>

<3, Bye>

<5, World, World, Hello>



A second example - reduce
 The master instance starts R reducing instances for 

combining results of mapping instances.

 In this example, only one reducing instance is used (instance 

D)
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BA

D

Reducinginstance

<5, Hello, Cloud, Cloud>

<7, Goodbye>

<3, Bye>

<5, World, World, Hello>



57

BA

<3, 1>

<5, 6>
D

Reducinginstance
<7, 1>

This is the 

final result!

A second example - reduce

<5, Hello, Cloud, Cloud>

<7, Goodbye>

<3, Bye>

<5, World, World, Hello>

The result is shown below. It means that there is one word 

containing three letters, six words containing five letters, 

and one word containing seven letters.



A third example 

 Consider a social network (社会网络)

like Wechat, QQ, LinkedIn where you 

can be friend with other people.

 If you are a LinkedIn user and you view 

the LinkedIn page of a friend, the page will 

indicates how many friends you have 

in common.  

 Illustration →
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This is the profile page of one of my former Master degree 

students. When I click on his page, I see that we have 10 

“friends” in common.



A third example

 Suppose that we have a social network with five 
users:   A,B, C, D, E 

 We assume that friendship (友谊 ) is a 
bidirectional relationship (双向关系).

 In other words, if you are a friend of someone, 
s/he is also your friend.

 Assume that this is

the friendship graph:
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A

B

C

E
D



A third example

Assume that data about friendship between 

users is stored in a text file as follows:

 A -> B C D

 B -> A C D E

 C -> A B D E

 D -> A B C E

 E -> B C D

61
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A third example

The data file will be split and sent to 

various mapping instances.

Mapping instances will process each line 

that they receive as follows: →
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A third example - map

The first line  A -> B C D is transformed 

as:

by combining A with each of his friend.

63

(A B) -> B C D

(A C) -> B C D

(A D) -> B C D

Key Value



A third example - map

The second line  B -> A C D E is transformed 

as:
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(A B) -> A C D E

(B C) -> A C D E

(B D) -> A C D E

(B E) -> A C D E

Key Value



A third example - map

The third line  C -> A B D E is transformed 

as:

65

(A C) -> A B D E

(B C) -> A B D E

(C D) -> A B D E

(C E) -> A B D E

Key Value



A third example - map

The fourth line  D -> A B C E is transformed 

as:

66

(A D) -> A B C E

(B D) -> A B C E

(C D) -> A B C E

(D E) -> A B C E

Key Value



A third example - map

The fifth line  E -> B C D is transformed as:
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(B E) -> B C D

(C E) -> B C D

(D E) -> B C D

Key Value



A third example – map (sort)

The values are then grouped by their key:

 (A B) -> (A C D E) (B C D)

 (A C) -> (A B D E) (B C D)

 (A D) -> (A B C E) (B C D)

 (B C) -> (A B D E) (A C D E)

 (B D) -> (A B C E) (A C D E)

 (B E) -> (A C D E) (B C D)

 (C D) -> (A B C E) (A B D E)

 (C E) -> (A B D E) (B C D)

 (D E) -> (A B C E) (B C D)

Furthermore, they are sorted (as above)
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A third example - reduction

This data is then split and sent to reducers

 (A B) -> (A C D E) (B C D)

 (A C) -> (A B D E) (B C D)

 (A D) -> (A B C E) (B C D)

 (B C) -> (A B D E) (A C D E)

 (B D) -> (A B C E) (A C D E)

 (B E) -> (A C D E) (B C D)

 (C D) -> (A B C E) (A B D E)

 (C E) -> (A B D E) (B C D)

 (D E) -> (A B C E) (B C D)
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A third example - reduction

Each reducer will intersect the list of 

value on each line:

The first line:

(A B) -> (A C D E) (B C D)

will thus become:

(A B) -> (C D)
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A third example - reduction

Each reducer will intersect the list of 

value on each line:

The second line:

(A C) -> (A B D E) (B C D)

will thus become:

(A C) -> (B D)

and so on….

71



A third example – final result

The final result is:

(A B) -> (C D)

(A C) -> (B D)

(A D) -> (B C)

(B C) -> (A D E)

(B D) -> (A C E)

(B E) -> (C D)

(C D) -> (A B E)

(C E) -> (B D)

(D E) -> (B C)

72

Key Value



A third example – final result

The final result is:

(A B) -> (C D)

(A C) -> (B D)

(A D) -> (B C)

(B C) -> (A D E)

(B D) -> (A C E)

(B E) -> (C D)

(C D) -> (A B E)

(C E) -> (B D)

(D E) -> (B C)

73

Having calculated 

this information,  we  

know the friends in 

common between 

any pairs of persons.

For example: A

and D have the 

friends B and C in 

common

Key Value



A third example - conclusion

 In this example, we have explained how the 
MapReduce framework can be used to 
calculate common friends in a social network.

 Why doing this?

◦ Big social networks such as LinkedIn have a lot of 
money.

◦ By precaculating (预先计算) information about 
common friends, a social network can provide the 
information more quickly to users.

◦ This can be recalculated every day.

74



4.8-CLOUD FOR 
SCIENCE AND 
ENGINEERING
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Cloud for science/engineering

 In the last 2000 years, science was 

mostly empirical.

 In recent decades, computational 

science (计算科学 ) has emerged where 

computers are used to simulate 

complex phenomena.

 Science may now combine:  

◦ theory, experiment, and simulation (仿真)

76
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Cloud for science/engineering

Generic problems involving data, in 
science:

• Collecting experimental data.

• Managing very large volumes of data.

• Building and executing models.

• Integrating data and literature.

• Documenting experiments.

• Sharing the data with others; data 
preservation for long periods of time.

77All these activities require powerful computing systems.



Cloud for science/engineering

Example of large databases:  

 The Chinese National Space 

Administration may collect huge amount of 

data about space using various equipment.

 The Chinese Meteorological 

Administration may collect huge amount of 

data about the weather.

The cloud is useful to analyze such large amount 

of data.
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Biology research

 Cloud computing is very important for biology 

research.

◦ Computation of molecular dynamics is CPU 

intensive.

◦ Protein alignment (蛋白质序列) is data-intensive.

 An example →
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Biology research - example

Using 3,700 instances, a task that would took about 7 

years on a single computer was done in 14 days!

80



ADDITIONAL 
INFORMATION 

81



Introduction

 Last week, we talked about MapReduce.

 MapReduce is a model to create cloud applications.

 It is used for developing applications that can be used in 

the cloud.

 It is called MapReduce because there are two steps called 

“Map” and “Reduce”.

82

Reading 

data
Map Writing 

data
Reduce Writing 

data



Introduction

 MapReduce is a popular model.

 There are many other models for developing 

cloud applications.

 For example: 

◦ Apache Spark 

◦ Apache Storm

◦ …
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Apache SPARK

 Spark is more complicated than MapReduce.

 Spark offers more than 100 operators to 

transform data.

 Spark can be used with the Java, Python and 

Scala programming languages 

(编程语言).
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Apache SPARK

 A problem of MapReduce is that it reads and write 
data many times to the storage 存储 (before and 
after each Map or Reduce operation). 

 This can make a cloud application slower.

 Solution:
◦ Using Spark, data can be kept in memory. 

◦ In other words, data is not read and written many times.

◦ Spark can read and transform data. However, Spark is 
“lazy”. It only read and transform data when an action 
needs to be performed on the data.
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Apache SPARK

 When Spark transforms data, the data is then stored 

in a structure called: 

Resilient Distributed Dataset (RDD).

Resilient = 能复原的
Distributed = 分布式
Dataset = 数据

 All the transformations that are applied to data are 

remembered so that a dataset can be recovered if 

some failure happen.
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Conclusion

 In this part, I have presented the 

MapReduce model, which is widely used 

for cloud computing.

 The first assignment is announced today.
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