Lecture #2

一 云计算入门 Introduction to Cloud Computing GESC1001

Philippe Fournier-Viger

Professor School of Humanities and Social Sciences philfv8@yahoo.com

Fall 2020

QQ group: **1127433879**

Introduction

Last week:

- The content of this course (goal, evaluation criteria, rules)
- Introduction to cloud computing.
- Today:
 - Introduction to cloud computing (part 2)
 - Chapter 2: challenges of distributed and parallel systems

Introduction (cont'd)

The **evaluation for this course** will not be too difficult. But please **study** well.

pdf 20-38

INTRODUCTION TO CLOUD COMPUTING (PART 2)

What is cloud computing (云计算)?

Cloud (云): a set of distant (遥远的) computers that provide **computing** or **storage services** to users.

What is cloud computing?

- A homogenous (同质) set of computers
- Provides elastic computing (弹性计算) capabilities to users
- Each user pay for what he uses (元).

What is cloud computing?

- A homogenous (同质) set of computers
- Provides elastic computing (弹性计算) capabilities to users
- Each user **pay for what he uses** (元).

Resources

The **cloud** provides 3 types of resources:

- Storage space (存储空间)
- Network infrastructure (网络基础设施)
- Applications and services (软件程序)

What is cloud computing?

- Public cloud (公共云) and Private cloud (私有云)
- Data is stored on multiple computers, often close to the places where it is used.
- Multiple copies of the data can be stored in the cloud.

Cloud provider (云提供商)

- A company or organization that manages a "**cloud**".
- Computers from a cloud are typically located in one or more data centers (数据中心).

What cloud providers do?

Manage the cloud

- computers, software, etc.
- Manager customers (客户管理)
 - 。billing (发送账单),
 - \circ accounting (会计),
 - call center (呼叫中心),
 - technical support (技术支持),
 - backup, management...

What cloud providers do?

Manage security

- authentication (认证),
- certification,
- intrusion prevention (入侵防御),
- 。virus protection (病毒防护),
- 。cryptography (密码术),
- physical security,
- access control (访问控制),...

Why using the cloud?

- Data is accessible anywhere, from multiple devices (e.g. phone, laptop)
- Easy to share data with other people
- No need to
 - buy equipment.
 - hire employees to manage the computers.
- The cloud is "**elastic**": the user can ask for more resources when needed.
- Generally, cheap (元).

Three ways of using the cloud (delivery models - 云交付模型)

I. Software-as-a-service

 The user stores his data in the cloud or use cloud applications (云应用) (e.g. 百度云, use the 163 e-mail service)

2. Platform-as-a-service

- The user may use his own **applications** in the cloud (e.g. install an application to manage customer data)
- 3. Infrastructure-as-a-service
- The user may install his own operating system (操作系统 e.g. Linux, Windows) and his own applications, and may have control on the network.

Ethical issues (伦理问题)

If you are using a **public cloud, you are giving control** of your data, applications and network **to someone else.**

Risks:

• Hackers (黑客) may access your data,

- Your data may be lost or corrupted (损坏的数据),
- Infrastructure failures (基础设施故障)
- Service may become unavailable (不可用的服务)
- Hard to find the source of a problem and fix it.

Some solutions...

- Each country should have rules and regulations to ensure responsibility (负 责任) and accountability (问责).
- Cloud providers should keep a log (访问日志):
 - Who uses cloud data and applications?
 - Who accesses the network?

Cloud vulnerabilities (云的漏洞)

A cloud may become unavailable due to:

- malicious attacks (恶意攻击)
 - 2004:Yahoo (雅虎) was inaccessible after an attack on Akamai in 2004.
- infrastructure failures (基础设施故障)
 - 2012: some Amazon (亚马逊) servers went unavailable after lightning strikes. Also caused by hardware and software bugs/deficiencies.
- Because many computers and applications run in the cloud, their complex interactions may lead to unexpected problems.

Storing copies of resources in multiple geographic locations.

• Reduces the risk of losses,

Shenzhen	Dalian	Chengdu

Storing copies of resources in multiple geographic locations.

• Reduces the risk of losses,

Storing copies of resources in multiple geographic locations.

Reduces the risk of losses,

Shenzhen

Shenzhen

Chengdu

Dalian

Chengdu

Reduces communication traffic (网络通信), **USERS** CLOUD Dalian

Storing copies of resources in multiple geographic locations.

Reduces the risk of losses,

Chengdu

• Reduces communication traffic (网络通信), USERS

Dalian CLOUD Dalian Chengdu Dalian

Shenzhen

 Reduces energy consumption (能源消费) (by using computers in locations where electricity is cheap)

How many copies of the data?

 Many copies: increases users' satisfaction quick response time (响应时间), maximum availability (可利用性), low cost, more reliability (可靠性)

 Few copies: increases the cloud provider's satisfaction financial benefits (元), smaller resource utilization (较小的资源利用),...

- In the cloud, if a computer is too "busy", it can share its tasks with other computers.
- This will reduce the workload (工作负荷) of each computer,
- This will reduce the **response time (**响应时间) for users.

Security in the cloud

Security is the biggest challenge (最大的挑战) for cloud computing!

- A cloud provider must gain the **trust** of users (用户的信赖).
- Sometimes, a public cloud should not be used (medical data, military data).
- Private clouds may provide better security and improve performance for real-time applications (实时应用).

Attacks against the cloud

An important challenge for cloud computing is to **protect the cloud from hackers (**黑客).

Denial-of-Service attack (DoS 拒绝服务)

- A hacker sends millions of messages to the cloud.
- The cloud spends all its computing power to process these fake messages.
- Hence, the cloud becomes unavailable to the real users.

Unauthorized access (未经授权的访问)

If a cloud is accessible from the Internet, a **hacker** may steal a **username (**用户名**)** and **password** (密码) to access and/or modify data.

Unauthorized access (未经授权的访问)

If a cloud is accessible from the Internet, a **hacker** may steal a **username (**用户名**)** and **password** (密码) to access and/or modify data.

Solutions: using strong passwords, changing the passwords often, etc.

Insider threat (内部威胁)

An employee or someone who has **physical access** (物理访问) to the cloud steals or modifies data.

Insider threat (内部威胁)

Solution: increasing security security cameras (安全摄像机), locking doors (锁门), background check for employees (背景调查)...

Insider threat (内部威胁)

Solution: data encryption 数据加密

- Transforming the data to so that the data cannot be understood by a thief (小偷).
- However, data need to be decrypted by cloud applications. So a risk remains.

This attack targets the "infrastructure-as-service" model.

For example:

I) a **hacker** gain access to the cloud by using the **username** and **password** of the administrator.

2) The **hacker** uses computers from the cloud to send millions of messages to users or other websites to take them down.

A hacker can potentially use <u>all</u> the resources provided by the cloud to perform big attacks.

Solutions:

- advanced security measures.
- virtualization (虚拟化): each user cannot use the whole cloud.A user can only run applications in a virtual machine (虚拟机 a kind of virtual computer) in the cloud.

What cloud providers must also do?

- Capacity allocation (容量分配)
- Load balancing (负载平衡)
- Energy optimization (能量优化): try to reduce energy consumption
- Provide Quality-of-Service (服务质量) guarantees
- . .

Challenge:

- It requires to know the **current state** of the **cloud**.
- Knowing the **state** of the cloud is difficult because there are many computers and their states change.
What cloud providers must also do?

A solution:

- Self-management (自我管理) and selforganization (自组织): the cloud automatically manages and organizes itself.
- Good.
- But it may become difficult to find the causes of security breaches (安全漏洞) or other problems. The cloud is a dynamic system (动态系统) with perhaps thousands of computers.

Interoperability (互操作性)

- It is desirable to avoid "Vendor lock-in" (厂商锁定)(that the user can easily change cloud provider)
- Not always easy!
- Solution: develop standards (标准) for cloud computing.

CHAPTER 2 – PARALLEL SYSTEMS 。(并联系统) AND DISTRIBUTED SYSTEMS (分布式系统)

Parallel system (并联系统)

A set of components (e.g. computers, processors, threads) that perform tasks in parallel (在并行).

e.g. a cloud communicating via a network.

e.g. a multi-processor computer (多处理器电脑) where processors communicate via shared memory (共用存储器).

2 processors

Distributed system (分布式系统)

A set of computers that communicate through a network by sending/receiving messages.

• e.g. a cloud communicating via a network.

e.g.a messaging applications like Wechat (微信)

Which tasks <u>can</u> be done in parallel (在并行)?

• Counting the number of students in the classroom

• Grading the assignments (作业) of students

Which tasks cannot be done in parallel?

Playing a song. Using more computers will not play the song faster.

 "Pregnancy (怀孕). More women will not reduce the length of pregnancy".

• Cooking (做饭): washing vegetables, cutting a green onion, etc. Some steps cannot be done in parallel.

Is it faster to do a task in parallel?

Sometimes. Why?

Because time must be spent for coordination (协调) and communication.

Using more computers is not always better!

Challenges of parallel computing

- Parallel system
- There are **several challenges** related to coordinating a set of computers that work in parallel.
- An **overview** of the **main challenges** \rightarrow

Failures (故障) may occur

After a failure, the state of a parallel system may become incorrect.

Example: consider that a person **A** wants to transfer $100 \ensuremath{\,\overline{ au}}$ to a person **B**

B 200元

600元

read(A);

write(A);

read(B);

write(B);

ATM

1977

A := A – amount;

B := B + amount;

BANK

B

MTA

500元

Example

Transfer_money(A, B, amount){

A := A - amount;

B := B + amount;

BANK

read(A);

write(A);

read(B);

write(B);

ATM

B 200元

100 元 is withdrawn

from the account of **A**

MTA

read(B);

B

A failure occurs before the

The money is lost!

Β.

BANK

money is transferred to person

MTA

- Each computer should keep the history of the operations that it performs on data.
 (a log -访问日志)
- If there is a failure, a computer can **undo** the operations to return to a correct state.

Concurrent accesses to data (并发访问)

Some resources must not be accessed by two computers at the same time. Otherwise, problems may occur!

Example: Person A wants to transfer 50 元 to person B Person B wants to transfer 500 元 to person A

Transfer_money(A, B, 50元)

read(A); A := A - 50元; write(A); read(B); B := B + **50**元; write(B);

А

Transfer_money(B,A,500元) read(B); B := B - **500**元; write(B); read(A); A := A + 500元; write(A);

Transfer_money(A, B, 50元)

read(A); A := A - 50元; A = 550元 write(A); read(B); B := B + **50**元; write(B);

Transfer_money(B,A,500元) read(B); B := B - **500**元; write(B); read(A); A := A + 500元; write(A);

Transfer_money(A, B, 50元)

read(A); A := A - **50**元; A = **550**元 write(A); read(B); B := B + **50**元; write(B); Transfer_money(B,A, 500元) read(B); B := B - 500元; write(B); read(A); A := A + 500元; write(A);

B 500元

Transfer_money(A, B, 50元)

Α

read(A); A := A - 50元; A = 550元 write(A); read(B); B := B + **50**元; write(B);

Transfer_money(B,A,500元) read(B); B := B - 500元; write(B); read(A); A := A + 500元; write(A);

В

Transfer_money(A, B, 50元)

read(A); A := A - **50**元 ; write(A); read(B); B := B + **50**元 ; write(B); Transfer_money(B,A, 500元) read(B); B := B - 500元; write(B); read(A); A := A + 500元; write(A);

A 550元 ← Some money is lost!!

B 500元

 $|600 \rightarrow ||00|$

Example

Transfer_money(A, B, 50元)

read(A); A := A - 50元; write(A); read(B); B := B + **50**元; write(B);

Transfer_money(B,A,500元) read(B); B := B - **500**元; write(B); read(A); A := A + 500元; write(A);

B

- A computer should always request the permission to modify data that is shared with other computers.
- This ensure that no other computer will modify the data at the same time.
- This is called mutual exclusion (互斥).

The **computer A** requests to modify data **X**

Challenges of distributed computing

- Distributed system
- An **overview** of the **main challenges** \rightarrow

How computers communicate?

- **Computers send messages** to other computers through a network such as the Internet.
- Protocol (通信协议): a set of rules that some computers follow to communicate with each other

Problem I: Message loss (消息丢失)

Some messages may be lost due to an unreliable network, or other problems occurring on a network.

How to avoid this problem? \rightarrow

Messages are numbered using **sequence numbers (**序列号) 1,2,3,.... before being sent.

Z В

Message 2 is lost. Computer B only receives messages I and 3

Computer B sends acknowledgements (确认) to inform **computer A** that it has received **messages I** and **3**

Computer A receives acknowledgements for message 1 and 3, but not for message 2. Thus, computer A sends message 2 again to computer B.

Computer B sends an acknowledgement to tell **Computer A** that it has received **message 2**.

Problem 2: Messages may arrive in an incorrect order

On the internet, it is not guaranteed that messages are received in the order that are sent.

Problem 2: Messages may arrive in an incorrect order

On the Internet, it is not guaranteed that messages are received in the order that are sent.

<u>Problem 3</u>: Corrupted messages (损坏的消息)

A message sent on a network may become corrupted due to a transmission error (传动误差).

Solution: use an error detection code (错误检测代码) An error detection code is calculated for each message. It is sent with the message В Α Hello, how are you? **19** characters

- Computer A calculates a code before sending his message.
- The **code** is the number of characters in the message (including spaces).

Solution: use an error detection code (错误检测代码)

• **Computer B** recalculates the code.

Other challenge: how to know the state of a distributed system?

- It is difficult to know the state of the cloud because it is always changing!
- If computer A asks what computer B is doing, before A receives the answers, B is already doing something else!

A solution

There exists some advanced algorithms (算法) for capturing the state of a distributed system.

We will not talk about this.

Challenge: how can we measure the time ?

- It is desirable to know when something has happened.
- However, clocks of computers are not synchronized.
- How to know if some event happened before some other event in a distributed system?

- There exists advanced algorithms (算法) for creating some logical clocks.
- A logical clock does not measure the exact time of events, but it measures their relative ordering (相对排序)

Conclusion

- Today, we have:
 - continued the introduction,
 - discussed challenges of parallel and distributed computing

http://philippe-fournier-viger.com/COURSES/CLOUD/

References

 Chapter I and 2. D. C. Marinescu. Cloud Computing Theory and Practice, Morgan Kaufmann, 2013.